期刊文献+

面向动态网络状态的数据可视化研究 被引量:1

Research on data visualization for dynamic network states
下载PDF
导出
摘要 真实世界中的网络大多都是带有时变属性的动态网络。动态网络可视化的目标是更好地帮助用户分析网络数据,发现数据特征。针对现有动态网络状态演化可视化方法存在的状态聚类和演化轨迹不明显的问题,提出一种引入特征分量相似度的动态网络状态演化可视化方法。该方法通过预先计算降维数据的本征维数,避免过度降维造成的数据缺失,最大程度保留时间步数据原有特征;再求得时间步特征分量相似度,将相似度融入力导引布局,加入相似力和万有引力实现更明显的状态聚类和演化轨迹。通过与Elzen等人的方法进行对比实验证明,本文提出的可视化方法能够直观地展示更多的动态网络演化状态。 Most of the networks in real world are dynamic networks with time-varying attributes. The goal of dynamic network visualization is assisting users in analyzing network data,discovering data features in a better way. Aiming at the problem that the existing dynamic network state evolution visualization methods cannot express the state cluster and evolution clearly,a method that introduces eigenvector similarity to visualization of state evolution of dynamic networks is proposed. To avoid the data loss caused by excessive dimension reduction,keep the original characteristics of the time steps,this method reduces the data to its intrinsic dimension by using the dimensionality reduction technique and maximum likelihood estimation. It calculates the eigenvector similarity and introduces the force-directed layout algorithm. By adding the similarity-force and gravity,the layout of state clusters and evolution is much clearer. The experiments which compare with Elzen’s method show that the proposed visualization method can present evolution states of dynamic network more clearly and directly.
作者 刘超 万莹 LIU Chao;WAN Ying(State Grid Jibei Information & Telecommunication Company, Beijing 100053,China)
出处 《信息技术》 2018年第5期115-120,共6页 Information Technology
关键词 动态网络 状态演化 网络可视化 特征分量相似度 力导引算法 dynamic networks state evolution networks visualization eigenvector similarity forcedirected algorithm
  • 相关文献

参考文献8

二级参考文献200

  • 1佘春东,王俊峰,刘立祥,周明天.Walker星座卫星网络拓扑结构动态性分析[J].通信学报,2006,27(8):45-51. 被引量:20
  • 2Derek Bruening, Qin Zhao. Building dynamic instrumentation tools with DynamoRIO [OL]. http.//dynamorio, org/tutori- al. html, 2011. 被引量:1
  • 3Qin Zhao, Derek Bruening, Saman Amarasinghe, et al. Um- bra: Efficient and scalable memory shadowing [C]. Toronto (CA) : Proceedings of the CGO, The 8th International Sympo- sium on Code Generation and Optimization, 2010. 22-31. 被引量:1
  • 4Winnie Cheng, Qin Zhao, Bei Yu, et al. TaintTrace: Effi- cient flow tracing with dynamic binary rewriting [C]. Sardi- nia, Italy: Proceedings. llth IEEE Symposium on Computers and Communications, 2006: 749-754. 被引量:1
  • 5Luk CK, Cohn R, Muth R, et al. Pin: Building customized program analysis tools with dynamic instrumentation [J]. SIG- PLAN Notices, 2005, 40 (6): 190-200. 被引量:1
  • 6Prashanth P Btm~ale, Chi-Keung Luk. PinOS: A programmable framework for whole-system dynamic instrumentation [C]. San Diego, California: Proceedings of the 3rd International Conference on Virtual Execution Environments, 2007: 137-147. 被引量:1
  • 7Nicholas Nethercote, Julian Seward. Valgrind: A framework for heavyweight dynamic binary instrumentation [J]. ACM SIGPLAN Notices, 2007, 42 (6). 89-100. 被引量:1
  • 8Mariam Sensalire, Patrick Ogao, Alexandra Telea, et al. E- valuation of software visualization tools: Lessons learned [C]. Edmonton, Alberta, Canada: 5th IEEE International Work- shop on Visualizing Software for Understanding and Analysis, 2009. 19-26. 被引量:1
  • 9Abslnt Angewandte Informatik GmbH. aiSee graph visualiza tion user manual for Windows and Linux-verslon 3.4. 3 [OL], http.//www, absint, com, 2011. 被引量:1
  • 10P Holme, J Saramaki. Temporal Networks [J/OL]. Physics Reports (S0370-1573), (2012) [2012]. doi: 10.1016 / j.physrep. 被引量:1

共引文献95

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部