期刊文献+

基于轮边驱动电动汽车轮胎力估计的路面附着系数估算 被引量:5

Estimate tire-road friction coefficient based on tire force estimation of the wheel drive electric vehicle
下载PDF
导出
摘要 为了能够实时准确的获得当前车轮的轮胎力及路面附着系数以提高汽车主动安全性能,提出一种轮边驱动电动汽车状态估计与路面附着系数估计相结合的估计方法。根据车载传感器及七自由度非线性车辆动力学模型,采用扩展卡尔曼滤波算法(EKF)进行车辆状态及轮胎力的估计。结合EKF估算结果和轮胎模型,采用递归最小二乘法(RLS)实时估计不同路面的附着系数。仿真结果表明:该方法可以在较为复杂工况下估计出不同的路面附着系数,估计精度较高,实时性较好。 A kind of estimation method combined the wheel drive electric vehicle state estimation and tire-road friction coefficient estimation is developed to obtain current tire force of the wheel and to improve vehicle active safety performance accurately. According to the on-board sensors and 7-DOF non-linear vehicle dynamic model, the estimator of the state of vehicle and tire force based on Extended Kalman Filter(EKF) is designed. Combined with EKF estimation results and tire model, Recursive Least Squares(RLS) for real-time estimation of different road adhesion coefficient is designed. The simulation results show that the estimation method can estimate the different road adhesion coefficient under complex conditions and has highly precision and real-time performance.
作者 刘万里 彭冲 韩家伟 Liu Wanli 1, Peng Chong1 , Han Jiawei2(1.Chongqing Vehicle Test & Research Institute, National Coach Quality Inspection and Test Center, Chongqing 401122; 2.State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400030)
出处 《汽车实用技术》 2018年第10期35-38,41,共5页 Automobile Applied Technology
基金 重庆市质量技术监督局科研计划项目(CQZJKY2014012)
关键词 轮边驱动 电动汽车 路面附着系数 扩展卡尔曼滤波算法(EKF) 递归最小二乘法(RLS) the wheel drive electric vehicle tire-road friction coefficient Extended Kalman Filter(EKF) Recursive Least Squares (RLS)
  • 相关文献

参考文献2

二级参考文献19

  • 1AHN C S, PENG H, TSENG H E. Robust estimation of road friction coefficient using lateral and longitudinal vehicle dynamics [ J ]. Vehicle System Dynamics, 2012, 50(6) : 961 -985. 被引量:1
  • 2GUSTAFSSON F. Slip-Based Tire-road friction estimation [ J]. Automatica, 1997, 33(6) : 1087 - 1099. 被引量:1
  • 3YI K, HEDRICK K, LEE S C. Estimation of tire-road friction using observer based identifiers [ J ]. Vehicle System Dynamics, 1999, 31 (4), 233 - 261. 被引量:1
  • 4STEFFEN M, MICHAEL U, KARL H. Estimation of the maximum tire-road friction coefficient [ J ]. Journal of Dynamic Systems Measurement and Control, 2003, 125 (12) :607 - 617. 被引量:1
  • 5LI K, MISENER J A, HEDRICK K. On-board road condition monitoring system using slip-based tyre-road friction estimation and wheel speed signal analysis [ J ]. Journal of Multi-body Dynamics, 2007, 221 ( 1 ) : 129 - 146. 被引量:1
  • 6RAJAMANI R, PIYABONGKARN D N, LEW J Y, et al. Tire-road friction-coefficient estimation [ J ]. IEEE Control Systems Magazine, 2010, 30 (4) : 54 - 69. 被引量:1
  • 7WANG J M, LEE A, RAJAMANI R. Friction estimation on highway vehicles using longitudinal measurements [ J ]. Journal of Dynamic Systems, Measurement, and Control, 2004, 126 (6): 265 - 275. 被引量:1
  • 8RAY L R. Nonlinear tire force estimation and road friction identification : simulation and experiments [ J ]. Automatica, 1997, 33 (10) : 1819 - 1833. 被引量:1
  • 9WENZEL T A, BURNHAM K J, BLUNDELL M V, et al. Kalman filter as a virtual sensor: applied to automotive stability systems [ J ]. Transactions of the Institute of Measurement and Control, 2007, 29 ( 2 ) : 95 - 115. 被引量:1
  • 10KIENCKE U, NIELSEN L. Automotive control systems [ M ]. Second Edition. Berlin: Springer Verlag, 2005 : 304 -313. 被引量:1

共引文献26

同被引文献40

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部