摘要
In this work, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), and imidazole (MIM)-derived bromide ionic liquids (ILs) were synthesized and used to catalyze the cycloaddition reactions of carbon dioxide (CO_2) with several kinds of epoxides to form cyclic car- bonates. The DBU derived bromide ionic liquid system was found to have the best catalytic activity among all the tested ILs. The influences of reaction conditions (including temperature, pressure and reaction time) on the reaction of CO_2 to propylene oxide (PO) were studied to show the best conditions of 120℃, 1 MPa, 2.5 h catalyzed by 2 mol% DBU-derived bromide ionic liquid, with the conversion of PO and the selectivity of propylene carbonate (PC) reaching 99% and 99%, respectively. Under the optimum reaction conditions, the ionic liquid system could be reused at least five times without decrease in selectivity and conversion. NMR spectroscopy and DFT calculations were used to reveal the hydrogen-bond interaction between ionic liquids and rea- gent, based on which the reaction mechanism was proposed.
In this work, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), and imidazole (MIM)-derived bromide ionic liquids (ILs) were synthesized and used to catalyze the cycloaddition reactions of carbon dioxide (CO_2) with several kinds of epoxides to form cyclic car- bonates. The DBU derived bromide ionic liquid system was found to have the best catalytic activity among all the tested ILs. The influences of reaction conditions (including temperature, pressure and reaction time) on the reaction of CO_2 to propylene oxide (PO) were studied to show the best conditions of 120℃, 1 MPa, 2.5 h catalyzed by 2 mol% DBU-derived bromide ionic liquid, with the conversion of PO and the selectivity of propylene carbonate (PC) reaching 99% and 99%, respectively. Under the optimum reaction conditions, the ionic liquid system could be reused at least five times without decrease in selectivity and conversion. NMR spectroscopy and DFT calculations were used to reveal the hydrogen-bond interaction between ionic liquids and rea- gent, based on which the reaction mechanism was proposed.