摘要
Hydration water can even decide the physicochemical properties of hydrated organic molecules. However, by far the most important hydration number for organic molecules, in particular polyethylene glycol which we are concerned with here, usually suffers from a large discrepancy. Here, we provide a scheme for accurate and unambiguous quantification of the hydration number based on the universal water-content dependence of glass transition temperature for aqueous solutions, testified by experimental results for polyethylene glycol molecules of a molar weight ranging from 200 to 20000.Moreover, we also clarify the fundamental misunderstanding lying in the definition and quantification of hydration water for PEG molecules in the literature, therein the hydration number for PEG in water-rich solutions has been determined at a critical concentration, across which the properties of the solution display obviously distinct water-content dependence.
Hydration water can even decide the physicochemical properties of hydrated organic molecules. However, by far the most important hydration number for organic molecules, in particular polyethylene glycol which we are concerned with here, usually suffers from a large discrepancy. Here, we provide a scheme for accurate and unambiguous quantification of the hydration number based on the universal water-content dependence of glass transition temperature for aqueous solutions, testified by experimental results for polyethylene glycol molecules of a molar weight ranging from 200 to 20000.Moreover, we also clarify the fundamental misunderstanding lying in the definition and quantification of hydration water for PEG molecules in the literature, therein the hydration number for PEG in water-rich solutions has been determined at a critical concentration, across which the properties of the solution display obviously distinct water-content dependence.
基金
Project supported by the National Natural Science Foundation of China(Grant Nos.11474325 and 11290161)
the Knowledge Innovation Project of Chinese Academy of Sciences on Water Science Research(Grant No.KJZD-EW-M03)