期刊文献+

PM2.5浓度预测模型的应用

Application of PM2.5 concentration prediction model
下载PDF
导出
摘要 空气中PM2.5浓度问题越来越受到各界的关注。根据PM2.5浓度数据的特征,首先选择ARIMA预测模型进行浓度预测;考虑到BP神经网络易陷入局部最小,而遗传算法具有全局搜索的能力,给出了遗传算法优化的BP神经网络预测模型;为了进一步提高预测精度,引入IOWGA算子,将ARIMA预测模型与遗传算法优化的BP神经网络预测模型相组合,给出了基于IOWGA算子的组合预测模型;最后经过实例仿真分析验证了模型的可行性和有效性,为PM2.5浓度预测提供基础资料。 The problem of PM2.5 concentration in air is receiving more and more attention. First,according to the characteristics of PM2.5 concentration data,the ARIMA prediction model was used to forecast the PM2.5 concentration. Then,taking into account of the BP neural network easy to fall into the local minimum whereas the genetic algorithm has the capability of global search,the BP neural network model optimized by genetic algorithm was established. In order to further improve the prediction accuracy,through introducing IOWGA operator the ARIMA prediction model was combined with the BP neural network optimized by the genetic algorithm to form an IOWGA operator based prediction model. Finally,the feasibility and effectiveness of the combined model were verified by simulations of a practical case. The use of the prediction model provides basic references for the prediction of PM2.5 concentration.
作者 王镱嬴 刘洪 WANG Yiying;LIU Hong(School of Science,University of Science and Technology Liaoning,Anshan 114051,China)
出处 《辽宁科技大学学报》 CAS 2018年第1期75-80,共6页 Journal of University of Science and Technology Liaoning
关键词 PM2.5浓度 差分自回归移动平均模型 遗传算法 IOWGA算子 组合预测 PM2.5 concentration ARIMA genetic algorithm IOWGA operator combined prediction
  • 相关文献

参考文献8

二级参考文献26

  • 1何建坤,刘滨.作为温室气体排放衡量指标的碳排放强度分析[J].清华大学学报(自然科学版),2004,44(6):740-743. 被引量:147
  • 2徐鹏飞,李炜,郑华,吴建国.神经网络在时间序列预测中的应用研究[J].电子技术(上海),2010(8):5-7. 被引量:11
  • 3雷可为,陈瑛.基于BP神经网络和ARIMA组合模型的中国入境游客量预测[J].旅游学刊,2007,22(4):20-25. 被引量:106
  • 4SHRESTHA R M, RTIMILSINA G. Factors affecting CO2intensity of power sector in Asia: A divisia decomposition analysis[J]. Energy Economics, 1996,18 ( 4 ) : 283 - 293. 被引量:1
  • 5ZHANG C,THOMAS C H, MICHAEL M M. Carbon inten- sity of electricity and CDM baseline: Case studies of Three Chinese Provinces[J]. Energy Policy, 2005,33(,1) : 451 -465. 被引量:1
  • 6范剑青,姚琦伟.非线性时间序列-建模、预报及应用[M].北京:高等教育出版社,2005. 被引量:1
  • 7刘兰娟,谢美萍.基于自适应小波神经网络神经的数据挖掘方法研究-对我国石油产量的预测分析[J].财经科学,2006(3):114-120. 被引量:1
  • 8CHEN Y, YANG B, DONG J, et al. Time series forecasting using flexible neural tree model[J]. Inf Sci, 2005,174 : 219 -235. 被引量:1
  • 9ASLANARGUN A, MAMMSDOY M, YAZICI B, et al. Com parison of ARIMA, neural networks and hybrid models in times series:Tourist arrival foreeasting[J]. Journal ot: Statis tieal Computation and Simulation, 2007 (77) : 29 - 53. 被引量:1
  • 10TSENG F M,YU H C,TZENG G H. Combining neural net work model with seasonal time ARIMA model[J]. Technolo gy Forecasting and Social Change,2002(69):71-87. 被引量:1

共引文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部