期刊文献+

特征选择的全极化SAR影像面向对象土地覆盖分类 被引量:5

Object-oriented Land Cover Classification Based on Feature Selection in Quad-polarimetric SAR Images
下载PDF
导出
摘要 全极化SAR数据信息丰富,仅利用单一的极化特征和基于像元的分类很难得到较好的分类效果。因此,提出了全极化数据特征优选结合面向对象方法进行土地覆盖分类。以云南西双版纳州勐腊县和普洱市思茅区的Terra SAR-X的X波段全极化雷达数据为信息源,首先对全极化SAR数据进行预处理,提取研究区Pauli RGB图像后,利用影像分割技术对Pauli RGB图像进行分割,作为分类的基本单元;然后对SAR影像提取极化分解特征和Span影像的纹理特征,选取最优特征集合;最后利用面向对象模糊分类方法进行土地覆盖分类,并采用实地调查数据对分类结果进行了精度评价。试验结果表明,面向对象方法可以很好地去除噪声的影响,最优组合的特征波段使得分类结果更加精确。西双版纳州勐腊县总体分类精度达到88.5%,普洱市思茅区总体分类精度达到86.8%,较之H/A/α-Wishart分类方法精度提高了40%以上。 As the quad-polarimetric SAR data has plentiful information, it is difficult to obtain good classification results just by single polarimetric feature and pixel-based classification. Based on the X-band quad-polarimetric radar data of Terra SAR-X in Mengla of Xishuangbanna and Simao Pu’er city, Yunnan province, the object-oriented land cover classification experiments based on feature selection are carried out. Firstly, the quad-polarimetric SAR data is preprocessed. The Pauli RGB image is extracted from the study area data, and then is segmented as the basic unit of classification using the image segmentation technique. Then, the polarimetric features and the texture features of Span images are extracted from the SAR images, and the optimal feature sets are selected. Finally, the object-oriented fuzzy classification method is used into classification experiments, and the classification results are evaluated by field survey data. The experimental results show that object-oriented method can effectively remove the impact of noise, and the optimal combination of feature bands makes the classification results more accurate. The overall classification accuracy is up to 88.5% for Mengla in Xishuangbanna, and is 86.8% in Simao of Pu’er city. Compared with the H/A/alpha-Wishart classification method, the accuracy is improved by more than 40%.
作者 陆翔 章皖秋 郑雅兰 岳彩荣 LU Xiang;ZHANG Wanqiu;ZHENG Yalan;YUE Cairong(Southwest Forestry University, Kunming 650224, Chin)
机构地区 西南林业大学
出处 《航天返回与遥感》 CSCD 2018年第2期93-103,共11页 Spacecraft Recovery & Remote Sensing
关键词 全极化 合成孔径雷达 影像分割 特征选择 模糊分类 遥感应用 quad-polarimetric synthetic aperture radar image segmentation feature selection fuzzy classification remote sensing application
  • 相关文献

参考文献7

二级参考文献33

  • 1吴永辉,计科峰,郁文贤.利用SVM的全极化、双极化与单极化SAR图像分类性能的比较[J].遥感学报,2008,12(1):46-53. 被引量:16
  • 2林剑,鲍光淑,王润生,王欣.基于模糊密度分解的遥感图像光谱和纹理信息的融合[J].电子学报,2004,32(12):2028-2030. 被引量:10
  • 3Haralick R M,Shanmugam K.Texture features for image classification.IEEE Tmns.on Sys,Man,and Cyb,1973,SMC-3(6):610-621. 被引量:1
  • 4Ulaby FT,Kouyate F,Brisco B,et al.Texturalinformation in SAR Images.IEEE Transactions on Geoscience and Remote Sensing,1986,24(2):235-245. 被引量:1
  • 5A K Jian,R C Dubes.Algorithms for Clustering Data [M].Englewood Cliffs,New Jersey:Prentice-Hall, 1988. 被引量:1
  • 6R D Duda,P E Hart.Pattern Classification and Scene Analysis [M].New York : Wiley, 1974. 被引量:1
  • 7Wu Y, Liu K, Ji K, et al. Region-based Classification of Polarimetric SAR Images Using Wishart MRF[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 668-672. 被引量:1
  • 8Yu P, Qin K, Clausi D A. Unsupervised Polar/metric SAR Image Segmentation and Classification Using Region Growing with Edge Penalty [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1302-1317. 被引量:1
  • 9Cloude S R, Pottier E. An Entropy-based Classification Scheme for Land Application of Polarimetric SAR[J]. IEEE Transac- tions on Geoscience and Remote Sensing, 1997, 35(1): 68-78. 被引量:1
  • 10Freeman A, Durden S L. A Ihree-component Scattering Model for Polarimetric SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963-973. 被引量:1

共引文献190

同被引文献46

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部