期刊文献+

基于非下采样轮廓波变换与自蛇扩散的合成孔径雷达图像相干斑抑制算法 被引量:2

Despeckling Algorithm for Synthetic Aperture Radar Images Based on Non-subsampled Contourlet Transtorm and Self-snake Diffusion
下载PDF
导出
摘要 针对合成孔径雷达(synthetic aperture radar,SAR)图像中乘性相干斑噪声的抑制与边缘保护问题,提出了一种基于非下采样轮廓波变换(NSCT)与自蛇扩散的抑斑新算法;该算法先利用NSCT变换对SAR图像进行多层子带分解;然后借助自蛇扩散对SAR图像不同子带分别实施参数不同的扩散滤波;最后对各去噪子带进行NSCT重构获得的SAR图像再次进行自蛇扩散滤波处理,从而实现带有边缘保护与增强的SAR图像相干斑抑制。实验表明,与多种传统抑斑算法相比,本文算法在相干斑抑制与边缘保护性能上均有明显提升。 Aiming at multiplicative speckle noise suppression and edge protection in synthetic aperture radar( SAR) images,a new despeckling algorithm based on non-subsampled contourlet transform( NSCT) and selfsnake diffusion is proposed. The SAR image is firstly decomposed into multilayer sub-bands by the NSCT. Then,different sub-bands are filtered by self-snake diffusions with different filtering parameters,respectively. The reconstructed SAR image is obtained by the inverse NSCT based on filtered sub-bands. In order to achieve well speckle reduction with edge protection and enhancement,the reconstructed SAR image is processed by self-snake diffusion again. The experimental results and comparisons with several traditional algorithms show that the proposed algorithm can significantly improve performances in speckle reduction and edge protection.
作者 潘杨 朱磊 胡晓 李楠 PAN Yang;ZHU Lei;HU Xiao;LI Nan(College of Electronics and Information, Xi'an Polytechnic University, Xi'an 710048, China)
出处 《科学技术与工程》 北大核心 2018年第13期79-85,共7页 Science Technology and Engineering
基金 国家自然科学基金(61401347) 陕西省科技厅工业科技攻关项目(2016GY-101) 陕西省教育厅自然科学基金(17JK0343) 西安工程大学博士科研启动基金(BS107020096)资助
关键词 SAR图像 相干斑抑制 非下采样轮廓波变换(NSCT) 自蛇扩散 区域划分 SAR image speckle reduction non-subsampled contourlet transform (NSCT) self-snake diffusion region subdivision
  • 相关文献

参考文献7

二级参考文献88

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2韦海军,谢华英,朱炬波.各向异性扩散相干斑抑制改进算法[J].系统工程与电子技术,2005,27(4):619-622. 被引量:2
  • 3王超,陈曦,张红.一种基于退化模型的高分辨率SAR去噪算法[J].遥感学报,2006,10(1):27-33. 被引量:3
  • 4Oliver C and Quegan S. Understanding Synthetic Aperture Radar Images. Boston MA: Artech House, 1998" 158-187. 被引量:1
  • 5Lee J S. Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, PAMI-2(2): 165-168. 被引量:1
  • 6Lopes A, Touzi R, and Nezry E. Adaptive speckle filters and scene heterogeneity. IEEE Transactions Geoseience and Remote Sensing, 1990, 28(6): 992-1000. 被引量:1
  • 7Lopes A, Nezry E, and Touzi R, et al.. Maximum a posteriori filtering and first order texture models in SAR images. Proc. IGARSS'90, Washington, D.C., May 20-24, 1990: 2409-2412. 被引量:1
  • 8Bhuiyanr M I H, Ahmad M O, and Swamy M N S. Spatially adaptive wavelet- based method using the cauchy prior for denoising the SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2007, 17(4): 500-507. 被引量:1
  • 9Bianchi T, Argenti F, and Alparone L. Segmentation-based MAP despeckling of SAR images in the undecimated Wavelet domain. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2728-2742. 被引量:1
  • 10Stian S and Torbjφrn E. A stationary wavelet-domain wiener filter for correlated speckle. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(4): 1219-1230. 被引量:1

共引文献50

同被引文献35

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部