期刊文献+

城市钢厂大气颗粒物环境风险预警方法探索 被引量:2

Exploration of Environmental Risk Warning Method for Atmospheric Particulate Matter in Urban Steel Mills
下载PDF
导出
摘要 有效的环境预警体系对城市钢厂的可持续发展至关重要。大气颗粒物是钢铁生产中排放的主要污染物之一,具有排放源数量大、点源面源共存、无组织排放量占比高等特点。以南方某钢铁集团的烧结厂区域为例,使用BP人工神经网络模型,研究城市钢厂的大气颗粒物风险预警方法。模型使用背景值、气象参数、生产参数作为输入层,颗粒物浓度为输出层进行训练。结果显示,训练集和测试集的相关系数R分别为0.996 4和0.995 8,大部分样本的颗粒物浓度预测值误差在±5μg/m^3范围内,BP网络模型的预测精度较高。 An effective environmental risk warning system is crucial to the sustainable development of urban steel mills. The atmospheric particulate matter is one of the major pollutants emitted in the production of steel,with the characteristics of a great many emission sources,the coexistence of point sources and surface sources,and a high proportion of non-organized emissions.In this paper,taking the example of a sintering plant of a steel group in southern China,the BP artificial neural network model is used to study the method of risk warning of atmospheric particulate matter in urban steel mills. The model uses background values,meteorological parameters,and production parameters as the input layer,and the particle concentration as the output layer. The results show that the correlation coefficient( R) of the training set and test set is 0. 9964 and 0. 9958,respectively.The predicted value of most samples have an error of less than 5 μg/m-3 and the prediction accuracy of BP network model is high.
作者 杨亦超 王娟 郑宏元 杨海真 YANG Yi-chao;WANG Juan;ZHENG Hong-yuan;YANG Hai-zhen(College of Environmental Scienee & Engineering, Tongji University, Shanghai 200092, China;State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, China;Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China)
出处 《四川环境》 2018年第2期86-91,共6页 Sichuan Environment
关键词 城市钢厂 大气颗粒物 环境风险预警 BP神经网络 Urban steel mill atmospheric particulate matter environmental risk warning BP neural network
  • 相关文献

参考文献13

二级参考文献101

共引文献189

同被引文献23

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部