期刊文献+

化学计量学在油—油和油—源对比中的应用现状及展望 被引量:9

The application of chemometrics in oil-oil and oil-source rock correlations:Current situation and future prospect
原文传递
导出
摘要 在综合考虑多参数的影响和划分样品或变量的种属类别等方面,化学计量学方法具有独特的优势,尤其适合于大量数据集的数据挖掘和区域性的油—油和油—源对比。详细地介绍了国际上常用的2种化学计量学油—油和油—源对比方法——谱系聚类分析(HCA)和主成分分析(PCA),以及最新引入的研究方法——多维标度(MDS),并且对这些方法的原理和适用范围等做了详细的比对和讨论。在应用化学计量学开展研究区域的地球化学对比时,还需要谨慎对待样品的筛选、对比参数的选择、数据的预处理和高维空间样品间距离的度量等,因为其直接关系到对比结果的可靠程度。 Chemometrics has unique advantages in comprehensive consideration of the influence of multiple parameters and division of the species category of samples or variables, especially for data mining of large data sets and regional oil-oil and oil-source correlation.This paper introduces in detail two commonly used chemometric oil-oil and oil-source correlation methods, hierarchical cluster analysis (HCA) and principal component analysis (PCA) as well as the newly introduced research method-multidimensional scaling (MDS) ,and a detailed comparison and discussion of the principles and scope of these methods.In terms of application chemometric methods to geochemical correlation,we need to be cautious about sample screen- ing,the choice of correlation parameters, data preprocessing, and the selection of high-dimensional spatial distances between samples ,because this is directly related to the reliability of the correlation results.
作者 王遥平 邹艳荣 史健婷 石军 Wang Yao-ping;Zou Yan-rong;Shi Jian-ting;Shi Jun(State Key Laboratory of Organic Geochemistry ,Guangzhou Institute of Geochemistry Chinese Academy of Sciences ,Guan gzhou 510640 ,China;University of Chinese Academy of Sciences ,Beijing 100049 ,China;Heilongjiang University of Science and Technology, Harbin 150022, China)
出处 《天然气地球科学》 EI CAS CSCD 北大核心 2018年第4期452-467,共16页 Natural Gas Geoscience
基金 有机地球化学国家重点实验室项目"多母源与复杂次生条件下基于分子(同位素)指标的塔里木盆地深层原油成因判识"(编号:SKLOGA201601)资助
关键词 化学计量学 生物标志化合物 油-油对比 油-源对比 Chemometrics Biomarker Oil-oil correlation Oil-source rock correlation
  • 相关文献

参考文献7

二级参考文献4

  • 1叶宗裕.对主成分综合评价方法若干问题的探讨[J].浙江师范大学学报(社会科学版),2006,31(6):87-90. 被引量:16
  • 2Kalton A, Langley P, Wagstaff K, et al. Generalized Clustering, Supervised, and Data Assignment. In: Procecdings of the 7th ACMSIGKDD.San Francisco, CA, 2001:299-304 被引量:1
  • 3Fayyad U, Reina C, Bradley P S. Initialization of Iterative Refinement Clustering Algorithms. In: Proceedings of ICDE99,1999:512 被引量:1
  • 4HanJiawei MichelineKamber.数据挖掘概念与技术[M].北京:机械工业出版社,2001.152-160. 被引量:34

共引文献243

同被引文献179

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部