期刊文献+

Wave-absorbing Properties of a Cement-based Coating with MnO2/Activated Carbon Composite

Wave-absorbing Properties of a Cement-based Coating with MnO_2/Activated Carbon Composite
下载PDF
导出
摘要 MnO_2/activated carbon composite(Mn-ACC) wave absorber was prepared by the reaction between Mn(CH_3COO)_2 and KMnO_4 on activated carbon. Then, a novel cement based composite absorbing coating(CB-CAC) was prepared by adding the Mn-ACC, manganese zinc ferrite and rubber particles into cement. XRD method was used to analyze the reaction products of the Mn-ACC. The tensile bond strength and the wave absorbing properties of the CB-CACs were also tested. The results showed that the crystallinity of MnO_2 formed in the Mn-ACC was poor. Adding Mn-ACC into the CB-CAC led to first increase and then decrease of the tensile bond strength. The tensile bond strength reached 1.89 MPa with 8.51% of the Mn-ACC. The CB-CACs obtained the optimal absorbing properties with the cement, manganese zinc ferrite, Mn-ACC, rubber particles and H_2O mass ratio of 7.5?7.5?1?1?5.5, respectively. The band width of the reflection below-10 dB was up to 8.8 GHz, which accounted for 57.14% of the test band. MnO_2/activated carbon composite(Mn-ACC) wave absorber was prepared by the reaction between Mn(CH_3COO)_2 and KMnO_4 on activated carbon. Then, a novel cement based composite absorbing coating(CB-CAC) was prepared by adding the Mn-ACC, manganese zinc ferrite and rubber particles into cement. XRD method was used to analyze the reaction products of the Mn-ACC. The tensile bond strength and the wave absorbing properties of the CB-CACs were also tested. The results showed that the crystallinity of MnO_2 formed in the Mn-ACC was poor. Adding Mn-ACC into the CB-CAC led to first increase and then decrease of the tensile bond strength. The tensile bond strength reached 1.89 MPa with 8.51% of the Mn-ACC. The CB-CACs obtained the optimal absorbing properties with the cement, manganese zinc ferrite, Mn-ACC, rubber particles and H_2O mass ratio of 7.5?7.5?1?1?5.5, respectively. The band width of the reflection below-10 dB was up to 8.8 GHz, which accounted for 57.14% of the test band.
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期394-402,共9页 武汉理工大学学报(材料科学英文版)
基金 Funded by the International Cooperation Office of the Ministry of Science and Technology of China(2013DFR50360) the Postdoctoral Research Foundation of Shenyang Ligong University,the Open Fund from Advanced Processing Technology of Metal Materials of Liaoning Key Laboratory,Shenyang Ligong University the Guide Project from Liaoning Natural Science Foundation of China(No.201602646)
关键词 wave-absorbing coating wave-absorbing properties reflection wave-absorbing coating wave-absorbing properties reflection
  • 相关文献

参考文献7

二级参考文献81

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部