期刊文献+

顾及专题属性的空间聚类算法质量比较研究

Study on Quality Comparison of Spatial Clustering Algorithms Considering Thematic Attributes
下载PDF
导出
摘要 顾及专题属性的空间聚类分析是空间数据挖掘中一个十分具有挑战性的研究课题。目前,顾及专题属性空间聚类分析一般可以分为划分的方法、层次的方法、基于模型的方法、基于密度的方法和混合的方法等。然而这些算法如何去比较质量、算法如何选取却是一个很少涉及却很重要的问题。本文对实际数据进行聚类分析实验,比较了11种顾及属性的空间聚类算法的质量,从整体质量差异和两两之间质量差异的角度分别进行了定性、定量分析,并分析了算法之间的相似度,这对于用户算法的选择、算法的评价具有指导意义。 Spatial clustering analysis,which takes account of thematic attributes,is a very challenging research topic in spatial data mining. At present,considering the thematic attribute,spatial clustering analysis can generally be divided into partition method,level method,model-based method,density based method and mixed method. However,how to compare the quality of these algorithms and how to select the algorithm is a very important problem. This paper makes a cluster analysis experiment on the actual data,and compares the quality of the 11 spatial clustering algorithms considering the attributes. The qualitative and quantitative analysis is carried out from the perspective of the overall quality difference and the quality difference between them,and the similarity between the algorithms is analyzed,which is of guiding significance for the user's choice of algorithm and algorithm evaluation.
作者 姚创杰 YAO Chuangjie(Guangdong Provincial Land and Resources Surveying and Mapping Institute, Guangzhou 510500, China)
出处 《测绘与空间地理信息》 2018年第4期167-173,共7页 Geomatics & Spatial Information Technology
关键词 空间聚类分析 定性分析 定量分析 质量比较 spatial clustering analysis qualitative analysis quantitative analysis quality comparison
  • 相关文献

参考文献3

二级参考文献19

  • 1ZHOU Jiaogen GUAN Jihong LI Pingxiang.DCAD:a Dual Clustering Algorithm for Distributed Spatial Databases[J].Geo-Spatial Information Science,2007,10(2):137-144. 被引量:15
  • 2HAN J W,KAMBER M. Data Mining: Concepts and Techniques[M].Morgan Kaufmann Publishers, 2001.223-259. 被引量:1
  • 3NG R T, HAN J. Efficient and effective clustering methods for spatial data mining [ A ]. Proc. of the 20th VLDB Cord. [ C ].Chile: Santiago, 1994. 144- 155. 被引量:1
  • 4ESTER M. A density - based algorithm for discovering clusters in large spatial database with noise[A]. Proc. 2nd Int. Conf. on KDDM[C]. USA:Portland, 1996. 226 - 231. 被引量:1
  • 5ESTER M. A database interface for clustering in large spatial database[A]. Proc. 1st Int. Conf. on KDDM[C]. Canada:Montreal,1995.47- 66. 被引量:1
  • 6Ester M, Kriegel H P, Sander J, et al. A Density- based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]. The 2nd Interna- tional Conference on Knowledge Discovery and Data Mining, Portland, USA, 1996. 被引量:1
  • 7Sander J, Ester M, Kriegel H P, et al. Density- based Clustering in Spatial Database: the Algorithm GDBSCAN and Its Applications [J]. Data Mining and Knowledge Discovery, 1998, 2(2) : 169-194. 被引量:1
  • 8PeiT, Zhou C H, Zhu A X, et al. A New Ap-proach to the Nearest-neighbour Algorithm to Dis- cover Cluster Features in Overlaid Spatial Point processes[J]. International Journal of Geographic Information Science, 2006, 20(2) : 153-168. 被引量:1
  • 9Deng M, Liu Q L, Cheng T, et al. An Adaptive Spatial Clustering Algorithm Based on Delaunauy Triangulation [J]. Computers, Environment and Urban Systems, 2011, 35(4): 320-332. 被引量:1
  • 10Fernando B, Victor L, Marco P. The Selforganizing Map, the Geo-SOM, and Relevant Variants for Geosci- ences[J]. Computers : Geosciences, 2005, 31(2):155-163. 被引量:1

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部