期刊文献+

一种特殊的非均匀水声阵列稀疏重构方法

A special method for non-uniform acoustic array with sparse reconstruction
下载PDF
导出
摘要 为了提高阵元的利用率和水下目标的测向精度,提出了一种特殊的非均匀水声阵列稀疏重构方法。利用2个均匀线性子阵列组成一个非均匀线性阵列作为信号的接收阵列,经过角度划分的非均匀线阵阵列流型阵作为观测阵,采用观测矩阵对信号进行投影测量得到观测值,从观测值中重构原信号进而得到方位信息。在相同分辨条件下,非均匀水声阵列技术可利用更少的阵元来识别更多的水下目标,因而极大地降低传统水声阵列的复杂度。在低先验知识、低信噪比条件下,提高了水声阵列的测向精度。 For improving the utilization ratio of the array elements and the precision of underwater targets, a special sparse reconstruction approach for NULA are proposed. This NULA which composed of two linear uniform sub-arrays is used as the receiving array of signal. Flow pattern array of NULA which have divided angle is the observation matrix. Using the observation matrix for projection measurement of the signal to obtain observed value. The original signal is reconstructed from the observed value then getting the orientation information. The technology of Non-uniform acoustic array can use fewer elements to identify more underwater targets with the same resolution condition. So it greatly reducing the complexity of traditional underwater acoustic array. It also improve the direction-finding accuracy of underwater acoustic array in low SNR and low prior knowledge conditions.
作者 严雨霞 王彪 YAN Yu-xia;WANG Biao(School of Electronic and Information, Jiangsu University of Science and Technology, Zhenjiang 212003, China;Key Laboratory of Underwater Acoustic Warfare Technology, B eijing 100094, China)
出处 《舰船科学技术》 北大核心 2018年第3期132-136,149,共6页 Ship Science and Technology
基金 国家自然科学基金资助项目(11574120) 江苏省自然科学基金资助项目(BK20161359) 江苏高校高技术船舶协同创新中心/江苏科技大学海洋装备研究院资助项目(HZ2016010) 水声对抗技术重点实验室基金资助项目
关键词 非均匀线阵 压缩感知 稀疏重构 波达方向角估计 non-uniform linear array (NULA) compressed sensing sparse reconstruction estimation of the direction of arrival
  • 相关文献

参考文献6

二级参考文献40

  • 1Belouchrani A, Amin M. Blind source separation based on time-frequency signal representation. IEEE Trans. on SP, 1998,SP-46(11): 2888 - 2898. 被引量:1
  • 2Belouchrani A, Amin M. Time-frequency MUSIC. IEEE Signal ProcessingLett., 1999, 6: 109- 110. 被引量:1
  • 3Zhang Y, Mu W. Subspace analysis of spatial time-frequency distribution matrices. IEEE Trans. on SP, 2001, SP-49(4): 747 -759. 被引量:1
  • 4Zhang Y, Mu W, Amin M. Time-frequency maximum likelihood methods for direction finding. Journal of Franklin Institute, 2000,337(4): 483 - 497. 被引量:1
  • 5Amin M, Zhang Y. Effects of crossterms on the performance of time-frequency MUSIC. IEEE Proc. Sensor Array and Multichannel Signal Processing Workshop. Mar. 2000:479 - 483. 被引量:1
  • 6Jin L, In Q, Wang W. Time-frequency signal subspace fitting method for direction-of-arrival estimation. ISCAS 2000, Geneva,2000, vol.3:375 - 378. 被引量:1
  • 7Ziskind I, Wax M. Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans. on ASSP, 1988,36(10): 1553- 1560. 被引量:1
  • 8Dogan M C, Mendel J M. Applications of cumulants to array processing, Part Ⅱ: Non-Gaussian noise suppression. IEEE Trans.on SP, 1995, 43(7): 1663- 1676. 被引量:1
  • 9郭跃,王宏远,周陬.阵元间距对MUSIC算法的影响[J].电子学报,2007,35(9):1675-1679. 被引量:28
  • 10Bilik I. Spatial compressive sensing approach for field directionali- ty estimation[ C] jj2009 IEEE Radar Conference. Pasodena, CA: IEEE, 2009:1 -5. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部