摘要
以GF-1和Landsat8遥感影像为数据源,采用逐步回归、非线性Logistic回归和基于空间位置的地理加权回归3种方法,结合134个野外样地调查数据,在河北省康保县开展叶面积指数反演研究,并对结果进行精度检验。结果表明:(1)在荒漠化地区,GF-1和Landsat-8遥感影像提取的植被指数因子与LAI均有较高的相关性。运用主成分分析方法对植被指数因子进行处理,可以有效消除各影响因子间的共线性。(2)基于GF-1和Landsat-8影像分别建立的3种模型,均以地理加权回归决定系数最大,均方根误差最小,反演精度最高。(3)国产GF-1数据反演LAI效果优于Landsat-8,可以代替Landsat-8数据进行叶面积指数的估测。
Leaf area index(LAI)is an important indicator of forest structural parameter.In this study,a novel method that combined PCA with a linear stepwise regression,a logistic-model and GWR regression was developed to derive an integrated regression model of LAI.A total of 134 sample plots were systematically selected in the study area-Kangbao County,Hebei province and LAI data were collected.Landsat-8 and GF-1 image were acquired.The results were validated using the observations of sample plots and showed that:(1)In the desertification area,the vegetation index and LAI extracted by GF-1 and Landsat-8 had a high correlation.The PCA method can be used to eliminate the collinearity of the vegetation index factors.(2)The estimation accuracy of GWR regression was the highest for both GF-1 and Landsat-8 data with the greatest determination coefficient and smallest root mean square error(RMSE).(3)Inversion of LAI by domestically produced GF-1 data in the study area is better than that of Landsat-8,and can be used as a substitute for Landsat-8 data for estimation of LAI.
作者
徐晓雨
孙华
王广兴
林辉
任蓝翔
崔云蕾
XU Xiaoyu;SUN Hua;WANG Guangxing;LIN Hui;KEN Lanxiang;CUI Yunlei(Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province, Changsha 410004 Hunan, China;Department of Geography, Southern Illinois University at Carbon dale, IL 62901 USA)
出处
《中南林业科技大学学报》
CAS
CSCD
北大核心
2018年第1期43-48,共6页
Journal of Central South University of Forestry & Technology
基金
国家林业局荒漠化和沙化监测专题项目(2014889)
湖南省百人计划特聘教授基金项目(1020990)
中国博士后科学基金(2014M562147)
"十二五"国家高技术研究发展计划(863计划)课题(2012AA102001)
湖南省科技厅项目"林业遥感大数据与生态安全"(2016TP1014)