期刊文献+

Dentromere Size and Its Relationship to Haploid Formation in Plants 被引量:3

Dentromere Size and Its Relationship to Haploid Formation in Plants
原文传递
导出
摘要 Wide species crosses often result in uniparental genome elimination and visible failures in centromere func- tion. Crosses involving lines with mutated forms of the CENH3 histone variant that organizes the centromere/ kinetochore interface have been shown to have similar effects, inducing haploids at high frequencies. Here, we propose a simple centromere size model that endeavors to explain both observations. It is based on the idea of a quantitative centromere architecture where each centromere in an individual is the same size, and the average size is dictated by a natural equilibrium between bound and unbound CENH3 (and its chaperones or binding proteins). While centromere size is determined by the cellular milieu, centromere positions are heritable and defined by the interactions of a small set of proteins that bind to both DNA and CENH3. Lines with defective or mutated CENH3 have a lower loading capacity and support smaller centromeres. In cases where a line with small or defective centromeres is crossed to a line with larger or normal centromeres, the smaller/defective centromeres are selectively degraded or not maintained, resulting in chromosome loss from the small-centromere parent. The model is testable and generalizable, and helps to explain the coun- terintuitive observation that inducer lines do not induce haploids when crossed to themselves. Wide species crosses often result in uniparental genome elimination and visible failures in centromere func- tion. Crosses involving lines with mutated forms of the CENH3 histone variant that organizes the centromere/ kinetochore interface have been shown to have similar effects, inducing haploids at high frequencies. Here, we propose a simple centromere size model that endeavors to explain both observations. It is based on the idea of a quantitative centromere architecture where each centromere in an individual is the same size, and the average size is dictated by a natural equilibrium between bound and unbound CENH3 (and its chaperones or binding proteins). While centromere size is determined by the cellular milieu, centromere positions are heritable and defined by the interactions of a small set of proteins that bind to both DNA and CENH3. Lines with defective or mutated CENH3 have a lower loading capacity and support smaller centromeres. In cases where a line with small or defective centromeres is crossed to a line with larger or normal centromeres, the smaller/defective centromeres are selectively degraded or not maintained, resulting in chromosome loss from the small-centromere parent. The model is testable and generalizable, and helps to explain the coun- terintuitive observation that inducer lines do not induce haploids when crossed to themselves.
出处 《Molecular Plant》 SCIE CAS CSCD 2018年第3期398-406,共9页 分子植物(英文版)
关键词 chromosome loss genome elimination ANEUPLOIDY KINETOCHORE CENH3 CENP-A chromosome loss, genome elimination, aneuploidy, kinetochore, CENH3, CENP-A
  • 相关文献

参考文献1

共引文献47

同被引文献15

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部