摘要
设m(≥0)是一个正整数,h(z)(≠0)是区域D内的全纯函数,且其零点重级均≤m,P是多项式满足deg P≥3,或者degP=2且P仅有一个零点.设F是区域D内的一族亚纯函数,其零点与极点重级均≥m+1.如果对于F中的任意两个函数f,g,P(f)f′与P(g)g′分担h(z),则F在区域D内正规.该结果改进了Lei and Fang^([8]),Zhang^([16])等人的结果.
Let m(≥ 0) be an integer, let h(z ≠0) be a holomorphic function in a domain D with all zeros have multiplicity at most m, let P be a polynomial with either deg P ≥ 3 or deg P = 2 and P having only one distinct zero, and let 9v be a family of meromorphic functions in a domain D, all of whose zeros and poles have multiplicity at least m + 1. If, for each pair of functions f and g in F, P(f)f' and P(g)g' share h(z) in D, then F is normal in D. The result improved the results due to Lei and Fang[s], Zhang[16].
作者
邓炳茂
雷春林
方明亮
Deng Bingmao;Lei Chunlin;Fang Mingliang(Institute of Applied Mathematics, South China Agricultural University, Guangzhou 510642)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2018年第2期222-230,共9页
Acta Mathematica Scientia
基金
国家自然科学基金(11371149)
华南农业大学博士生国外联合培养(2017LHPY003)~~
关键词
亚纯函数
正规定则
分担函数
Meromorphic function
Normal criterion
Shared function.