期刊文献+

EXISTENCE AND BLOW-UP BEHAVIOR OF CONSTRAINED MINIMIZERS FOR SCHRDINGER-POISSON-SLATER SYSTEM 被引量:1

EXISTENCE AND BLOW-UP BEHAVIOR OF CONSTRAINED MINIMIZERS FOR SCHRDINGER-POISSON-SLATER SYSTEM
下载PDF
导出
摘要 In this article, we study constrained minimizers of the following variational problem ε(p):={u∈H1 inf(R3),||u||22=p} E(u),ρ〉0,where E(u) is the SchrSdinger-Poisson-Slater (SPS) energy functional E(u):1/2∫R3|△u(x)|2dx-1/4∫R3∫R3u2(y)u2(x)/|x-y|dydx-1/p∫R3|u(x)∫pdx in R3,and p ∈ (2,6). We prove the existence of minimizers for the cases 2 〈 p 〈10/3, p 〉 0, and P =10/3, 0 〈 p 〈 p*, and show that e(ρ) = -∞ for the other cases, where p* = ||φ||22 and φ(x) is the unique (up to translations) positive radially symmetric solution of -△u + u = u7/3 in R3. Moreover, when e(ρ*) = -∞, the blow-up behavior of minimizers as p/p* is also analyzed rigorously. In this article, we study constrained minimizers of the following variational problem ε(p):={u∈H1 inf(R3),||u||22=p} E(u),ρ〉0,where E(u) is the SchrSdinger-Poisson-Slater (SPS) energy functional E(u):1/2∫R3|△u(x)|2dx-1/4∫R3∫R3u2(y)u2(x)/|x-y|dydx-1/p∫R3|u(x)∫pdx in R3,and p ∈ (2,6). We prove the existence of minimizers for the cases 2 〈 p 〈10/3, p 〉 0, and P =10/3, 0 〈 p 〈 p*, and show that e(ρ) = -∞ for the other cases, where p* = ||φ||22 and φ(x) is the unique (up to translations) positive radially symmetric solution of -△u + u = u7/3 in R3. Moreover, when e(ρ*) = -∞, the blow-up behavior of minimizers as p/p* is also analyzed rigorously.
作者 朱新才
出处 《Acta Mathematica Scientia》 SCIE CSCD 2018年第2期733-744,共12页 数学物理学报(B辑英文版)
基金 partially supported by National Natural Science Foundation of China(11671394)
关键词 SchrSdinger-Poisson-Slater system constrained minimizer blow-up behavior SchrSdinger-Poisson-Slater system constrained minimizer blow-up behavior
  • 相关文献

参考文献1

二级参考文献22

  • 1Bokanowski, O., L6pez, J. L., Snchez, 6, et al.: Long time behavior to the SchrSdinger Poisson-X systems. In: Mathematical Physics of Quantum Mechanics, Lecture Notes in Phys., 690, Springer, Berlin, 2006, 217-232. 被引量:1
  • 2Bokanowski, O., L6pez, J. L., Soler, J.: On an exchange interaction model for quantum transport: The SchrSdinger Poisson-Slater system. Math. Models Methods Appl. Sci., 13, 1397-1412 (2003). 被引量:1
  • 3Catto, I., Dolbeault, J., Snchez, O., et al.: Existence of steady states for the Maxwell-SchrSdinger-Poisson system: exploring the applicability of the concentration-compactness principle. Math. Models Methods Appl. Sci., 23, 1915 1938 (2013). 被引量:1
  • 4Cazenave, T., Lions, P. L.: Orbital stability of standing waves for some nonlinear SchrSdinger equations. Commun. Math. Phys., 85, 549-561 (1982). 被引量:1
  • 5D'Aprile, T., Mugnai, D.: Solitary waves for nonlinear Klein-Gordon Maxwell and SchrGdinger Maxwell equations. Proc. Roy. Soc. Edinburgh Sect. A, 134, 893-906 (2004). 被引量:1
  • 6Georgiev, V., Prinari, F., Visciglia, N.: On the radiality of constrained minimizers to the SchrSdinger- Poisson-Slater energy. Ann. Inst. H. Poincard Anal. Non Lindaire 29, 369-376 (2012). 被引量:1
  • 7Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001. 被引量:1
  • 8Illner, R., Zweifel, P. F., Lange,. H.: Global existence, uniqueness and asymptotic behaviour of solutions of the Wigner-Poisson and SchrSdinger-Poisson systems. Math. Methods Appl. Sci., 17(5), 349-376 (1994). 被引量:1
  • 9Lenzmann, E.: Uniqueness of ground states for pseudorelativistic Hartree equations. Anal. PDE, 2(1), 1-27 (2009). 被引量:1
  • 10Lieb, E. H.: Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud. Appl. Math., 57, 93-105 (1976/77). 被引量:1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部