期刊文献+

一种基于SVR节点数据预测改进算法 被引量:1

A node data prediction optimization algorithm based on SVR
下载PDF
导出
摘要 针对无线网络中部分传感器失效后无法进行有效或准确预测节点信息的问题,提出了一种面向无线传感网络的节点数据预测算法。该算法是在支持向量回归(SVR)算法基础上,引入了邻居节点影响因素(或称邻居节点数据的相关性),采用邻居节点相关性对其数据进行修正,从而实现了对SVR算法的改进,弥补了SVR算法在随机突发事件中预测不够准确的问题。经过仿真实验表明,该算法能够有效地应对突发或临时原因引起采集样本数据突然改变问题,预测更接近真实数据,准确性更高。 To solve the problem of unable to assess the status of the monitoring area after some nodes unavailable or failure, a data prediction algorithm for wireless sensor network is put forward. Neighbor nodes factors are joined together with Support Vector Regression. It adjusts the data by the correlation of neighbor nodes to improve the SVR algorithm. It can solve inaccurate prediction problem of the SVR algorithm in random incident. The simulation results show that it can effectively deal with the changes leaded by the accidental factors and has enhance the accuracy of prediction.
作者 刘梅 张浏 LIU Mei1 ,ZHANG Liu2(1. Netwark Engineering and Research Center, South China University of Technology, Guangzhou 510640, China ; 2. IT Department, HUISHANG Bank, Hefei 230001, Chin)
出处 《电子设计工程》 2018年第6期86-89,94,共5页 Electronic Design Engineering
基金 国家科技支撑计划项目(2012BAH09B01) 广东省省级科技计划项目(2016B030308001) 广州市天河区科技计划项目(201502YH019)
关键词 无线传感网络 支持向量回归 预测算法 邻居节点 均值算法 wireless sensor networks SVR prediction algorithm neighbor node mean algorithm
  • 相关文献

参考文献11

二级参考文献131

  • 1卫保国,沈兰荪,蔡轶珩,张新峰.中医舌苔腐腻分析算法的研究[J].电子学报,2003,31(z1):2083-2086. 被引量:25
  • 2张新峰,沈兰荪,卫保国,蔡轶珩.多类支撑向量机在中医舌质、舌苔分类和识别的应用研究[J].电路与系统学报,2004,9(5):110-113. 被引量:8
  • 3DEMPSTER A, LAIRD N, RUBIN D. Maximum likelihood from incomplete data via the EM algorithm[ J]. Journal of the Royal Statistical Society, 1977, 39(1) : 1 - 38. 被引量:1
  • 4ALLISON P. Multiple imputation for missing data: A cautionary tale [ J]. Sociological Methods and Research, 2000, 28(3) : 301 - 309. 被引量:1
  • 5SHAFER J. Model - based imputations of census short-form items [ C]// Proceedings of the Annual Research Conference. Washington, DC: Bureau of the Census, 1995:267 -299. 被引量:1
  • 6WILKINSON L. Statistical methods in psyehology journals: Guidelines and explanations[ J]. American Psychologist, 1999, 54(8) : 594 - 604. 被引量:1
  • 7RAMAKRISHNAN S. Sensing the World [J]. Jasubhai Digital Media, 2003:26-28. 被引量:1
  • 8HALATCHEV M, GRUENWALD L. Estimating missing values in related data streams [ EB/OL]. [ 2009 - 02 - 20]. http://comad2005, persistent, co. in/COMAD2005Proc/pages083-094, pdf. 被引量:1
  • 9GRUENWALD L, CHOK H, ABOUKHAMIS M. Using data mining to estimate missing sensor data[ C]// Proceedings of 7th IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2007:207 - 212. 被引量:1
  • 10VAPNIK V. The nature of satistieal learning theory[ M]. Berlin: Spfinger-Verlag, 1995. 被引量:1

共引文献103

同被引文献15

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部