期刊文献+

平均光流方向直方图描述的微表情识别 被引量:7

Mean Histogram of Oriented Optical Flow Feature For Micro-expression Recognition
下载PDF
导出
摘要 微表情持续时间短、强度低和局部运动的特点,给其识别带来了极大困难。本文提出了一种新的平均光流方向直方图(MHOOF)描述的微表情识别算法,首先检测人脸稠密关键点并根据关键点坐标和人脸动作编码系统(FACS)将人脸区域划分成13个感兴趣区域(ROI),然后提取选定ROI内相邻两帧之间的HOOF特征来检测微表情序列的峰值帧,最后提取从起始帧到峰值帧这一段图片序列的MHOOF特征进行微表情识别。CASME II微表情库上的实验表明,本文提出的MHOOF特征可有效描述微表情的变化,识别率比两种最优的算法MDMO和Di STLBP-RIP分别提升了5.53%和3.12%。 The recognition of micro-expression has been a great challenge for its three characteristics, i. e. , short duration, low intensity and usually local movements. This paper proposed a novel Mean Histogram of Oriented Optical Flow (MHOOF) feature for micro-expression recognition. First, a set of facial feature landmarks were detected and 13 Regions of Interest (ROIs) were partitioned in facial area based on the landmark coordinates and Facial Action Coding System (FACS) , then the apex frame was detected by HOOF feature extracted in some specific ROIs frame-by-frame. Finally, MHOOF features were extracted from the image sequence that from the onset frame to the apex frame for recognition. The experimental results on the ideal spontaneous micro-expression database, namely, CASME II indicate that the proposed method can describe the changes of micro-expression effectively, and improvements of 5.53% and 3. 12% are achieved when compared to the two state-of-the-art algorithms MDMO and DiSTLBP-RIP respectively.
作者 马浩原 安高云 阮秋琦 MA Hao-yuan1,2, AN Gao-yun1,2, RUAN Qiu-qi1,2(1. Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China;2. Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing 100044, Chin)
出处 《信号处理》 CSCD 北大核心 2018年第3期279-288,共10页 Journal of Signal Processing
基金 国家自然科学基金(61772067 61472030 61471032 61370127) 中央高校基本科研业务费专项资金(2017JBZ108)
关键词 微表情检测 微表情识别 光流 micro-expression detection micro-expression recognition optical flow
  • 相关文献

参考文献2

二级参考文献17

  • 1Mubashir M, Shao L, Seed L. A survey on fall detec- tion: Principles and approaches [ J ]. Neurocomputing, 2013,100 : 144-152. 被引量:1
  • 2Andersson M, Gustafsson F, St-Laurent L, et al. Recog- nition of anomalous motion patterns in urban surveillance [ J ]. IEEE Journal on Selected Topics in Signal Process- ing, 2013:7 ( 1 ) : 102-110. 被引量:1
  • 3Zhang C, Wang H, Fu R R. Automated Detection of Driver Fatigue Based on Entropy and Complexity Meas- ures[J]. IEEE Transactions on Intelligent Transportation Systems, 2014:15( 1 ) :168-177. 被引量:1
  • 4Zhang T Z, Lu H Q, Li S Z. Learning semantic scene models by object classification and trajectory clustering [ C] fflEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2009 : 1940-19479. 被引量:1
  • 5Mahadevan V, Li W X, Bhalodia V,et al. Anomaly De- tection in Crowded Scenes [ C ] ///IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010 : 1975-1981. 被引量:1
  • 6Li Weixin, Vijay Mahadevan, Nuno Vaseoncelos. Anom- aly detection and localization in crowded scenes. Pattern Analysis and Machine Intelligence, IEEE Transactions on 36,1 (2014) : 18-32. 被引量:1
  • 7Barnich O, Van Droogenbroeck M. ViBe: a powerful ran- dom technique to estimate the background in video se- quences [ C ] // International Conference on Acoustics, Speech, and Signal Processing (ICASSP)2009: 945-948. 被引量:1
  • 8Brutzer S, Hoferlin B, Heidemann G. Evaluation of back- ground subtraction techniques for video surveillance [ C ]// IEEE International Conference on Computer Vision and Pat- tern Recognition ( CVPR), 2011 : 1937-1944. 被引量:1
  • 9Dolla' r P, Wojek C, Schiele B, et al. Pedestrian Detec- tion: An Evaluation of the State of the Art [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2012:34(4) :743-761. 被引量:1
  • 10Beauchemin S S, Barron J L. The computation of optical flow [ J ]. ACM computing surveys ( CSUR), 1995 : 27 (3) : 433-466. 被引量:1

共引文献20

同被引文献22

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部