期刊文献+

微流控惠斯通电桥式通用流阻测量方法 被引量:3

Microfluidic Wheatstone Bridge for Measurement of Hydraulic Resistance
下载PDF
导出
摘要 标准化是微流控系统的发展趋势,很多器件需要精确的流量控制和传输。因此,准确地表征和测量芯片功能模块的流体阻力具有重要的应用价值。提出了一种类比于惠斯通电桥测量不同流阻大小的器件,该器件将一个芯片内的膜阀视为可变流阻器,与待测器件并联。通过施加不同的压力,控制膜阀的开口度,保持桥平衡,直接计算获得待测芯片的流阻大小。仿真计算发现,其测量范围达到4个数量级,误差控制在3%以内。结果表明,微流控惠斯通电桥是测量流阻的有效方法,可以根据不同的应用环境,设计不同的尺寸和结构,以满足特定需要。 Standardization is the trend of microfluidic system,therefore many devices require precise flow control and transport of fluid.Therefore,it's important to characterize and measure the flow resistance for different chips.In this paper,a microfluidic analogue of the Wheatstone bridge circuit was developed for the measurement of different hydraulic resistance in a microfluidic device.It regards an on-chip membrane valve as a variable resistor,in parallel with the device.By applying different pressure,the membrane valve's opening degree is controlled,Wheatstone bridge balance is kept,and the resistance of the chip is calculated directly.In this article,the measurement range reaching four magnitude was simulated on the computer with the error less than 3%.As a result,the microfluidic Wheatstone bridge represents an effective method for measurement of hydraulic resistance. And depending on various application environments, different dimensions and structures can be designed to satisfy special requirements.
出处 《半导体光电》 CAS 北大核心 2018年第1期81-85,共5页 Semiconductor Optoelectronics
基金 江苏省光通信工程技术研究中心项目(ZSF0402)
关键词 微流体学 数值模拟 测量 惠斯通桥 流阻 microfluidics numerical simulation measurement Wheatstone bridge hydraulic resistance
  • 相关文献

参考文献1

二级参考文献23

  • 1莫建华,林斌.微流控芯片光学检测系统集成化新进展[J].光学仪器,2004,26(6):63-68. 被引量:1
  • 2吴建刚,岳瑞峰,曾雪锋,刘理天.微流控光学器件与系统的研究进展[J].光学技术,2006,32(1):71-74. 被引量:3
  • 3B. K. Gibson. Liquid mirror telescopes: history [J]. J. Royal. Astron. Soc. Can., 1991, 85(4):158-171 被引量:1
  • 4D. Psaltis, S. Quake, C. H. Yang. Developing optofluidic technology through the fusion of microfluidics and optics [J]. Nature, 2006, 442(7101):381-386 被引量:1
  • 5G. M. Whitesides. The origins and the future of microfluidics [J]. Nature, 2006, 442(7101):368-373 被引量:1
  • 6S. Kwon, L. P. Lee. Focal length control by microfabricated planar electrodes-based liquid lens (μPELL) [C]. Proc. 11th International Conference on Solid State Sensors and Actuators Transducers, 2001, 1342:1348-1351 被引量:1
  • 7T, Krupenkin, S. Yang, P. Mach. Tunable liquid microlens [J]. Appl. Phys. Lett., 2003, 82(3):316-318 被引量:1
  • 8S. Kuiper, B. H. W. Hendriks. Variable-focus liquid lens for miniature cameras [J]. Appl. Phys. Lett., 2004, 85(7):1128-1130 被引量:1
  • 9E. M. Vuelban, N. Bhattacharya, J. J. M. Braat. Liquid deformable min-or for high-order wavefront correction [J]. Opt. Lett., 2006, 31(11):1717-1719 被引量:1
  • 10M. L Adams, M. Enzelberger, S. Quake et al. Microfinidic integration on detector arrays for absorption and fluorescence microspectrometers [J]. Sensors and Actuators, 2003, A104:25-31 被引量:1

共引文献24

同被引文献25

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部