期刊文献+

基于负荷聚类的中长期电力交易设想 被引量:4

Assumption of Medium and Long-Term Electricity Transaction Based on User Load Clustering Method
下载PDF
导出
摘要 讨论和完善在市场化条件下,电力交易中心对中长期交易的组织和管理工作的思路,提出利用负荷聚类等数据挖掘技术,获取并分析用户负荷特性,进而为中长期交易安排提供参考的设想,以提升其安全性和科学性,减少制度性成本;并利用k-means聚类方法分析陕西省负荷特性数据,将交易的组织和与相应的聚类中心联系起来,结合聚类结果对中长期交易的组织和管理提出建议。 To improve the provincial electricity trading plat- form's management and arrangement of medium and long-term electricity transactions in the context of electrical marketization, this paper proposes to use data mining technology such as loadinng clustering method, acquiring and analyzing the user load characteristics and then providing the reference plan for me- dium and long-term trading arrangements so as to enhance safety and scientificalness and reduce the institutional cost. In addi- tion, the K-means clustering method is used to analyze the load characteristic data of Shaanxi province, linking the organization of transaction and the corresponding clustering centers, and finally suggestions are put forward for the organization and man- agement of medium and long term transactions based on the clustering result.
出处 《电网与清洁能源》 北大核心 2017年第12期77-82,共6页 Power System and Clean Energy
基金 国家重点研发计划资助项目(2016YFB0901101)~~
关键词 电力市场 负荷特性聚类 电力中长期交易 K-MEANS算法 交易机制 Electricity market user load clustering medi-um and long-term electricity transaction k-means algorithm trading mechanism
  • 相关文献

参考文献6

二级参考文献22

共引文献37

同被引文献38

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部