期刊文献+

基于最大互信息系数的信息推送模型构建 被引量:9

Information push model-building based on maximum mutual information coefficient
下载PDF
导出
摘要 针对目标用户近邻集合选择失准的问题,引入可普适性测度非线性关系的关联指标——最大互信息系数(MIC),并以此测度用户间的相似程度。基于某一给定的阈值,为目标用户选择近邻集合,然后以近邻集合作为训练集,构建支持向量机个性化预测模型,对目标用户的感兴趣项目进行打分预测。仿真结果表明,MIC测度较Pearson等测度选择的近邻集合更为准确,并具有对阈值不敏感的优点。 The correlation indicator,Maximum Information Coefficient(MIF),which can pervasively measure the nonlinear relationship,is introduced to solve the problem of inaccurate selection of the near-neighbor set of the target users.The indicator is employed to measure the similarity between users.First,the near-neighbor set target users is selected based on a given threshold.Then,the personalized SVM prediction model is built with the attained near-neighbor set as the training set to carried out scoring prediction for the interesting items of the target users.Simulation results show that the near-neighbor set selected by the MIF Measuring is more accurate than that selected by the Pearson Measuring,and has the merit of insensitive to the threshold.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第2期558-563,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(31772157) 国家星火计划项目(2014GA770015)
关键词 计算机应用 信息推送 相似性测度 模型构建 最大互信息系数 computer application information push similarity measure model-building maximum mutual information coefficient
  • 相关文献

参考文献3

二级参考文献29

  • 1罗奇,余英,赵呈领,曹艳.自适应推荐算法在电子超市个性化服务系统中的应用研究[J].通信学报,2006,27(11):183-186. 被引量:12
  • 2舒风笛,赵玉柱,王继喆,李明树.个性化领域知识支持的用户主导需求获取方法[J].计算机研究与发展,2007,44(6):1044-1052. 被引量:11
  • 3BELKIN N,CROFT B.Information filtering and information retrieval:two sides of the same coin[J].Communications of ACM,1992,35 (12):29-38. 被引量:1
  • 4BHARGAVE H K.Paid placement strategies for internet search engines[C]// Proceedings of the 11 th International Conference on World Wide Web.[S.l.]:[s.n.],2002:117-123. 被引量:1
  • 5FENG J,BHARGAVA H K.Comparison of allocation rules for paid placement advertising in search engines[C]// Proceedings of the 5th International Conference on Electronic Commerce.[S.l.]:[s.n.],2003:294-299. 被引量:1
  • 6MCCOY S,EVERARD A.The effects of online advertising[J].Communications of the ACM,2007,50 (3):84-88. 被引量:1
  • 7BRODER A,FONTOURA M.A semantic approach to contextual advertising[C]//Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.[S.l.]:[s.n.],2007:559-566. 被引量:1
  • 8QAMRA A,TSENG B,CHANG E Y.Mining blog stories using community-based and temporal clustering[C]// Proceedings of the 15th ACM International Conference on Information and Knowledge Management.[S.l.]:[s.n.],2006:58-67. 被引量:1
  • 9MISHNE G,RIJKE M D.Language model mixtures for contextual Ad placement in personal blogs[C]//Proceedings of 5th International Conference on NLP (FinTAL).[S.l.]:[s.n.],2006:435-446. 被引量:1
  • 10DING X W,LIU B.The utility of linguistic rules in opinion mining[C]// Proceedings of the 30th Annual International ACM SIGIR Confernce on Research and Development in Information Retrieval.[S.l.]:[s.n.],2007:811-212. 被引量:1

共引文献12

同被引文献81

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部