期刊文献+

纳米复合隔热材料高温等效导热系数辨识方法

Inverse method for retrieving high-temperature effective thermal conductivity of nanocomposite thermal insulation
下载PDF
导出
摘要 搭建高温瞬态热特性实验装置,测量获取某纳米复合隔热材料在290~1 090 K温度范围内的高温瞬态热特性数据。基于辐射与导热耦合传热模型和群体智能优化的遗传算法,建立随温度变化等效导热系数的辨识模型。通过数值实验验证了辨识模型的可靠性。结合真实实验测量所得高温瞬态热特性数据,辨识获取材料在290~1 090 K温度范围内的等效导热系数,介于0.027~0.043 W/(m·K),随温度升高呈非线性上升趋势。 An experimental apparatus was built to measure transient thermal characteristics of nanocomposite thermal insulation within a temperature range between 290 and 1 090 K. An inverse method was developed to retrieve the temperature-dependent effective thermal conductivity based on transient temperature measurements. It was achieved by combining a forward model for solving combined conduction and radiation and an optimization method based on genetic algorithm(GA).The method was validated by numerical experiments. The temperature-dependent effective thermal conductivities of nanocomposite thermal insulation at normal pressure were retrieved by solving the inverse method. The retrieved value increased from 0. 027 to 0. 043 W/(m·K) as temperature increased from 290 to 1 090 K.
出处 《中国科学院大学学报(中英文)》 CSCD 北大核心 2018年第2期216-221,共6页 Journal of University of Chinese Academy of Sciences
基金 国家自然科学基金(51536001 51676055)资助
关键词 纳米复合隔热材料 等效导热系数 辨识 高温实验 nanocomposite thermal insulation effective thermal conductivity inverse identification high temperature experiment
  • 相关文献

参考文献2

二级参考文献17

  • 1于帆,张欣欣,何小瓦.非稳态平面热源法同时测量材料的导热系数和热扩散率[J].宇航计测技术,2006,26(6):13-17. 被引量:27
  • 2Zeng S Q, Hunt A, Greif R. Transport Properties of Gas inSilica Aerogel [J]. Journal of Non-Crystalline Solids, 1995,186: 264-270. 被引量:1
  • 3Deng Z S, Wang J, Wu A M, Shen J, Zhou B. HighStrength SiO2 Aerogel Insulation [J]. Journal of Non-Crystalline Solids, 1998, 225: 101-104. 被引量:1
  • 4Wang J, Kuhn J, Lu X. Monolithic Silica Aerogel Insu-lation Doped With TiO2 Powder and Ceramic Fibers [J].Journal of Non-Crystalline Solids, 1995, 186: 296-300. 被引量:1
  • 5Zeng J S Q, Greif R, Stevens P, Ayers M, Hunt A. Effec-tive Optical Constants n and k and Extinction Coefficientof Silica Aerogel [J]. Journal of Material Research, 1996,11(3): 687-693. 被引量:1
  • 6Kamdem H T T, Baillis D D. Reduced Models for Radia-tive Heat Transfer Analysis through Anisotropic FibrousMedium [J]. ASME Journal of Heat Transfer, 2010, 132:072703. 被引量:1
  • 7Dombrovsky L A, Randrianalisoa J H,Baillis D. InfraredRadiative Properties of Polymer Coatings Containing Hol-low Microspheres [J]. International Journal of Heat andMass Transfer, 2007, 50: 1516-1527. 被引量:1
  • 8Lee S C, Cunnington G R. Conduction and RadiationHeat Transfer in High-Porosity Fiber Thermal Insulation[J]. Journal of Thermophysics and Heat Transfer, 2000,14(2): 121-136. 被引量:1
  • 9Daryabeigi K. Heat Transfer in High-Temperature FibrousInsulation [J]. Journal of Thermophysics and Heat Trans-fer, 2003,17(1): 10-20. 被引量:1
  • 10Zhao S Y, Zhang B M, He X D. Temperature and PressureDependent Effective Thermal Conductivity of Fibrous In-sulation [J]. International Journal of Thermal Sciences,2009, 48: 440-448. 被引量:1

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部