期刊文献+

Mo-doped Na3V2(PO4)3@C composites for high stable sodium ion battery cathode 被引量:1

Mo-doped Na3V2(PO4)3@C composites for high stable sodium ion battery cathode
原文传递
导出
摘要 NASlCON-type Na3V2(PO4)3 (NVP) with superior electrochemical perfor- mance has attracted enormous attention with the development of sodium ion batteries. The structural aggregation as well as poor conductivity of NVP hinder its application in high rate perforamance cathode with long stablity. In this paper, Na3V2-xMox(PO4)3@C was successfully prepared through two steps method, including sol-gel and solid state thermal reduction. The optimal doping amount of Mo was defined by experiment. When x was 0.15, the Na3V1.85Mo0.15(PO4)3@C sample has the best cycle performance and rate performance. The discharge capacity of Na3V1.85Mo0.15(PO4)3@C could reach 117.26 mA.h.g-1 at 0.1 C. The discharge capacity retention was found to be 94.5% after 600 cycles at 5 C. NASlCON-type Na3V2(PO4)3 (NVP) with superior electrochemical perfor- mance has attracted enormous attention with the development of sodium ion batteries. The structural aggregation as well as poor conductivity of NVP hinder its application in high rate perforamance cathode with long stablity. In this paper, Na3V2-xMox(PO4)3@C was successfully prepared through two steps method, including sol-gel and solid state thermal reduction. The optimal doping amount of Mo was defined by experiment. When x was 0.15, the Na3V1.85Mo0.15(PO4)3@C sample has the best cycle performance and rate performance. The discharge capacity of Na3V1.85Mo0.15(PO4)3@C could reach 117.26 mA.h.g-1 at 0.1 C. The discharge capacity retention was found to be 94.5% after 600 cycles at 5 C.
出处 《Frontiers of Materials Science》 SCIE CSCD 2018年第1期53-63,共11页 材料学前沿(英文版)
基金 Financially supports from the National Natural Science Foundation of China (Grant Nos. 21671005 and 21171007) and the Programs for Science and Technology Development of Anhui Province (1501021019) were acknowledged.
关键词 energy storage materials DOPING electrochemical reactions Na ionbattery energy storage materials doping electrochemical reactions Na ionbattery
  • 相关文献

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部