期刊文献+

Numerical Investigation of Ultrasonic Guided Wave Dynamics in Piezoelectric Composite Plates for Establishing Structural Self-Sensing

Numerical Investigation of Ultrasonic Guided Wave Dynamics in Piezoelectric Composite Plates for Establishing Structural Self-Sensing
原文传递
导出
摘要 This article presents a numerical investigation of guided wave generation, propagation, interaction with damage, and reception in piezoelectric composite plates for the purpose of establishing structural self-awareness.This approach employs piezoelectric composite materials as both load bearing structure and sensing elements.Finite element modal analysis of a plate cell with Bloch-Floquet boundary condition(BFBC) is performed to understand the wave propagation characteristics in piezoelectric composite plates. A comparative study is carried out between a standard composite plate and a piezoelectric composite plate to highlight the influence of piezoelectricity on guided wave dispersion relations. Subsequently, a transient dynamic coupled-field finite element model is constructed to simulate the procedure of guided wave generation, propagation, interaction with damage, and reception in a piezoelectric composite plate. Active sensing array is designed to capture the structural response containing the damage information. Three engineering scenarios, including a pristine case, a one-damage-location case and a two-damage-location case, are considered to demonstrate the ultrasonic sensing capability of the piezoelectric composite system. Finally, time-reversal method is utilized to locate and image the damage zones. This research shows that piezoelectric composite material possesses great potential to establish structural self-awareness, if it serves both as the load bearing and structural sensing components. This article presents a numerical investigation of guided wave generation, propagation, interaction with damage, and reception in piezoelectric composite plates for the purpose of establishing structural self-awareness.This approach employs piezoelectric composite materials as both load bearing structure and sensing elements.Finite element modal analysis of a plate cell with Bloch-Floquet boundary condition(BFBC) is performed to understand the wave propagation characteristics in piezoelectric composite plates. A comparative study is carried out between a standard composite plate and a piezoelectric composite plate to highlight the influence of piezoelectricity on guided wave dispersion relations. Subsequently, a transient dynamic coupled-field finite element model is constructed to simulate the procedure of guided wave generation, propagation, interaction with damage, and reception in a piezoelectric composite plate. Active sensing array is designed to capture the structural response containing the damage information. Three engineering scenarios, including a pristine case, a one-damage-location case and a two-damage-location case, are considered to demonstrate the ultrasonic sensing capability of the piezoelectric composite system. Finally, time-reversal method is utilized to locate and image the damage zones. This research shows that piezoelectric composite material possesses great potential to establish structural self-awareness, if it serves both as the load bearing and structural sensing components.
出处 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第1期175-181,共7页 上海交通大学学报(英文版)
基金 the National Natural Science Foundation of China(No.51605284)
关键词 piezoelectric composite guided wave time-reversal method structural self-awareness piezoelectric composite, guided wave, time-reversal method, structural self-awareness
  • 相关文献

参考文献1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部