摘要
We study the superfuild ground state of ultracold fermions in optical lattices with a quadratic band touching. Examples are a checkerboard lattice around half filling and a kagome lattice above one third filling. Instead of pairing between spin states, here we focus on pairing interactions between different orbital states. We find that our systems have only odd-parity (orbital) pairing instability while the singlet (orbital) pairing instability vanishes thanks to the quadratic band touching. In the mean field level, the ground state is found to be a chiral p-wave pairing superfluid (mixed with finite f-wave pairing order-parameters) which supports Majorana fermions.
We study the superfuild ground state of ultracold fermions in optical lattices with a quadratic band touching. Examples are a checkerboard lattice around half filling and a kagome lattice above one third filling. Instead of pairing between spin states, here we focus on pairing interactions between different orbital states. We find that our systems have only odd-parity (orbital) pairing instability while the singlet (orbital) pairing instability vanishes thanks to the quadratic band touching. In the mean field level, the ground state is found to be a chiral p-wave pairing superfluid (mixed with finite f-wave pairing order-parameters) which supports Majorana fermions.
基金
Project supported by the National Natural Science Foundation of China(Grant No.11675116)
the Soochow University,China