期刊文献+

灰色模型和线性回归耦合模型在区域护理人力资源预测中的应用 被引量:4

Application of grey model (1, 1 )-linear regression coupling model in the prediction of regional nursing human resource
原文传递
导出
摘要 目的 以每千人口护士人数预测为例,探讨灰色GM(1,1)和线性回归耦合模型在区域卫生人力资源预测中的应用,提供卫生人力预测方法学参考.方法采用EXCEL公式编程建立灰色GM(1,1)预测模型对每千人口护士数影响因素进行预测,将影响因素预测值代入回归方程对区域护理人力资源进行目标年预测拟合分析.结果运用灰色GM(1,1)和线性回归耦合模型对区域护理人力资源进行预测,其预测值与实际值拟合误差较小,耦合模型预测精度等级为优秀,其预测结果可作为目标年的参考.结论耦合模型弥补了灰色系统模型中不含线性因素的不足,又改善了线性回归预测模型中不能表达指数增长的缺陷,模型构建合理可行.  Objective Taking the prediction of the number of nurses per thousand cases as an example, to discuss the application of grey model GM(1, 1)-linear regression Coupling Model in the prediction of regional nursing human resource, so as to provide methodology reference for health human resource prediction.Methods The grey model GM (1, 1) was built up by EXCEL formula to predict the influencing factors of the number of nurses per thousand people. The predictive value of the influencing factors were substituted into the regression equation for the annual prediction of regional nursing human resource. Results The fitting error between predicted value and actual value was small when using the grey model GM (1, 1)-linear regression coupling model in the prediction of regional nursing human resource. The accuracy level of this coupling model prediction is excellent, and the prediction result can be used as a reference for target year. Conclusions The coupling model not only makes up for the lack of 1inear factors in the grey system model, but also improves the defect that exponential growth cannot be expressed in the linear regression prediction model, so the construction of the coupling model is reasonable and feasible.
出处 《中华现代护理杂志》 2018年第2期217-220,共4页 Chinese Journal of Modern Nursing
基金 2016年绍兴市柯桥区医疗卫生科技计划项目(2016KZ014) 2016年度柯桥区哲学社会科学立项课题(柯区社科联[2016]3号)
关键词 护理管理研究 灰色模型 线性回归模型 护理人力资源 预测 Nursing administration research Grey model (1, 1) Linear regression models Nursing human resource Forecasting
  • 相关文献

参考文献12

二级参考文献101

共引文献139

同被引文献46

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部