摘要
In this paper, a polyethersulfone (PES)/multi-walled carbon nanotubes (MWCNTs) composite membrane was prepared us- ing phase inversion. The surface morphology and internal structure of the membrane were observed by scanning electron microscopy (SEM). The effects of MWCNTs content on various aspects of membrane performance such as porosity, water flux, and antifouling characteristics were investigated. Results showed that proper addition of MWCNTs would improve the properties of the membrane. MWCNTs had a strong adsorption capacity for industrial dyes and the composite membrane could be used as an effective method to identify and clean up illegal dyes in foods. In addition, this new method for iden- tifying dyes is rapid: the cleanup procedure in the determination of illegal dyes in foods by the composite membrane was shortened to 30 min or less compared to 6-8 h for traditional methods.
In this paper, a polyethersulfone (PES)/multi-walled carbon nanotubes (MWCNTs) composite membrane was prepared us- ing phase inversion. The surface morphology and internal structure of the membrane were observed by scanning electron microscopy (SEM). The effects of MWCNTs content on various aspects of membrane performance such as porosity, water flux, and antifouling characteristics were investigated. Results showed that proper addition of MWCNTs would improve the properties of the membrane. MWCNTs had a strong adsorption capacity for industrial dyes and the composite membrane could be used as an effective method to identify and clean up illegal dyes in foods. In addition, this new method for iden- tifying dyes is rapid: the cleanup procedure in the determination of illegal dyes in foods by the composite membrane was shortened to 30 min or less compared to 6-8 h for traditional methods.
基金
supported by the Fund of Key Projects of Higher Education in Henan Province, China (17A550018)
the Fund of Henan Province Science and Technology Research Project, China (172102310314)