期刊文献+

AAV-SaCas9敲除MSTN基因病毒的构建及鉴定 被引量:3

Construction and Identification of MSTN Knockout AAV-SaCas9
下载PDF
导出
摘要 为了研究肌肉生长抑制素(MSTN)的相关功能,应用分子生物学方法构建敲除MSTN的AAVSaCas9载体,通过转染293T细胞提取基因组后进行T7酶切鉴定、TA克隆及测序确定该基因的敲除效果;将鉴定正确的AAV-SaCas9重组质粒与pHelper质粒共转染AAV-293细胞3 d后,分离纯化病毒并用实时荧光定量PCR法检测病毒滴度。结果显示,成功构建了敲除MSTN基因的AAV-SaCas9重组载体,T7酶切和测序鉴定出sgRNA2位点可以对MSTN进行编辑,并成功将其包装成病毒,经荧光定量PCR鉴定病毒滴度为2.73×10^(12)vg/mL。 To study the function of myostatin( MSTN),molecular biology method was applied to construct the recombinant vector of MSTN knockout AAV-SaCas9,the transfected 293T cells were extracted for the genome and identified by T7 endonuclease. Then the mutations were further confirmed by TA cloning and sequencing. The AAV-293 cells were co-transfected with AAV-SaCas9 and helper plasmids. Virus was isolated and purified after three days,and its titer was determined by real-time fluorescence quantitative PCR. Our results showed that the recombinant vector of MSTN knockout AAV-SaCas9 was successfully constructed. MSTN could be edited by sgRNA2 identified by T7 digestion and sequencing,and AAV-SaCas9 was successfully packaged into virus. Finally the titer was 2. 73 × 10^(12) vg/mL,which was identified by fluorescence quantitative PCR.
出处 《河南农业科学》 CSCD 北大核心 2018年第1期118-121,共4页 Journal of Henan Agricultural Sciences
基金 河南省科技计划项目(142300413209) 农业部转基因重大专项(2014ZX0801015B)
关键词 肌肉生长抑制素基因 CRISPR-Cas9 腺相关病毒载体 293T细胞 MSTN gene CRISPR-Cas9 AAV vector 293T cell
  • 相关文献

参考文献2

二级参考文献21

  • 1Filipowicz W, BhattacharyyaS N, Sonenberg N. Mecha- nisms of post-transcriptional regulation by microRNAs : are the answers in sight? [ J ]. Nature Reviews Genetics, 2008,9(2) : 102-114. 被引量:1
  • 2Taft R J, Pheasant M, Mattick J S. The relationship be- tween non-protein-coding DNA and eukaryotic complexity [ J ]. Bioessays, 2007,29 ( 3 ) : 288-299. 被引量:1
  • 3Wienholds E,Plasterk R H A. MicroRNA function in ani- mal development [ J ]. FEBS Letters, 2005,579 ( 26 ) : 5911-5922. 被引量:1
  • 4Chen J F,Mandel E M,Thomson J M, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle prolif- eration and differentiation [ J]. Nature Genetics, 2006,38 (2) :228-233. 被引量:1
  • 5Cimmino A,Calin G A,Fabhri M,et al. miR-15 and miR- 16 induee apoptosis by targeting BCL2 [ J ]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102 ( 39 ) : 13944-13949. 被引量:1
  • 6Borel C, Antonarakis S E. Funetional genetic variation of human miRNAs and phenotypie eonsequenees[ J ]. Mare-malian Genome, 2008,19 ( 7/8 ) :503 -509. 被引量:1
  • 7Mishra P J,Mishra P J, Banerjee D, et al. MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: Introducing microRNA pharmacog- enomics[ J]. Cell Cycle,2008,7(7) :853-858. 被引量:1
  • 8Glazov E A, Cottee P A, Barris W C, et al. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach [ J ]. Genome Research, 2008, 18(6) :957-964. 被引量:1
  • 9Chen C Z, Li L, Lodish H F, et al. MicroRNAs modulate hematopoietic lineage differentiation [ J ]. Science, 2004, 303(5654) :83-86. 被引量:1
  • 10Zuker M. Mfold web server for nucleic acid folding and hybridization prediction [ J ].Nucleic Acids Res, 2003, 31(13) :3406-3415. 被引量:1

共引文献3

同被引文献35

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部