期刊文献+

SARank:一种学术社交网络用户影响力分析模型

SARank:An Influence Analysis Model on Academic Social Network
下载PDF
导出
摘要 社交网络作为联系现实社会与网络社会的重要途径,已经成为人们日常使用最为广泛的网络应用。目前,国内外各大社交网络均拥有大量的活跃用户,并且用户数量仍在不断上升。由众多用户不断产生的大量数据,已经成为数据分析领域新的研究热点。而基于社交网络的科研信息共享协作平台,也十分受科研工作者们的青睐。同样,在学术社交网络中不断产生的大量数据中也隐含着十分重要的信息,有着极大的研究价值。因此,以学术社交网络中海量的用户数据为研究对象,以大数据分析处理技术为基础,结合科研领域相关参数以及社交网络中信息传播的相关指标,提出一种多元化的科研用户影响力计算模型-SARank。通过学术社交网络中的数据对科研用户影响力进行量化分析,形成一种新的科研评价参考指标。经过实验分析,得出了有益结论。 As an important connection of the real life and the virtual network space,the SNS(social network services) is becoming the most widely used network applications in daily life.At present,there are lots of active users with rising number in the most famous social networks.The huge volume contents generated by many users all the time have become a newresearch hotspot of the data analysis field.The scientific information sharing and collaborating platform based on social network has being favored very much by the scientific researchers.There are many potential precious information in the UGC(user generated contents) of the academic social network,with great research values of them.Therefore,taking the massive user data as an object in the scholar social network,based on the big data analyzing and processing technology,combined with the parameters of the scientific research field and the information communication indexes of the academic social network,we propose an altmetrics(alternative metric) scientific research user influence analysis model named SARank.It could be used in the quantitative computing of the scientific user influence of the scholar social network,forming a newreference indicator of the scientific research evaluation system.Some useful conclusions are obtained through the analysis and explanation of the experiment.
机构地区 内蒙古科技大学
出处 《计算机技术与发展》 2018年第3期32-36,共5页 Computer Technology and Development
基金 国家自然科学基金(61462069 61662056) 内蒙古自然科学基金(2014MS0622 2015MS0622 2016MS0609)
关键词 学术社交网络 影响力分析 多元度量 数据科学 用户产生内容 scholar social network influence analysis altmetrics data science user generated content
  • 相关文献

参考文献3

二级参考文献62

  • 1CHA Meeyoung, HADDADI Hamed, BENEVENUTO Fabricioets. Measuring User Influence in Twitter: The Million Follower Fallacy[C]. Washington, DC: ICWSM, 2010: 97-105. ROMERO Daniel Mo, GALUBA Wojciech, ASUR Sitaramets. 被引量:1
  • 2ROMERO Daniel Mo, GALUBA Wojciech, ASUR Sitaramets. Influence and Passivity in Social Media [C]. New York: [s.n.], 2011: 113-114. 被引量:1
  • 3WENG Jianshug, LIM Ee-Peng, JING Jiang, et al. FwitterRank: Finding Topic-sensitive Influential lwitterers[C]. New York: WSDM, 2010: 261-270. 被引量:1
  • 4BALABASI A L. The Origin of Bursts and Heavy Tails in Human Dynamics[J]. Nature, 2005, 435: 207-211. 被引量:1
  • 5OLIVEIRA Joo Gama, BARABASI Albert-L/Lszl6. Human Dynamics: Darwin and Einstein Correspondence Patterns[J]. Nature, 2005, 437: 1251. 被引量:1
  • 6VAZQUEZ Alexei, OLIVEIRA J G, DEZSO Zohanets. Modeling Bursts and Heavy Tails in Human Dynamics[J]. Physical Review E, 2006, 73(3): 1-19. 被引量:1
  • 7WU Ye, ZHOU Changsong, CHEN Maoyingets. Human Comment Dynamics in On-line Social Systems[J]. Physica A, 2010, 389(24): 5832-5837. 被引量:1
  • 8PAGE Lawrence, BRIN Sergey, MOTWANI Rajeev, et al. The Pagerank Citation Ranking: Bringing Order to the Web[R]. California: Stanford Digital Libraries, 1999. 被引量:1
  • 9Gladwell M. The Tipping Point:How Little Things Can Make a Big Difference[M].New York:Little Brown,2000. 被引量:1
  • 10Berry J,Keller E. The Influentials:One American in Ten Tells the Other Nine How to Vote,Where to Eat,and What to Buy[M].New York:The Free Press,2003. 被引量:1

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部