期刊文献+

Algal removal from cyanobacteria-rich waters by preoxidation-assisted coagulation-flotation: Effect of algogenic organic matter release on algal removal and trihalomethane formation 被引量:1

Algal removal from cyanobacteria-rich waters by preoxidation-assisted coagulation-flotation: Effect of algogenic organic matter release on algal removal and trihalomethane formation
原文传递
导出
摘要 The cyanobacteria-bloom in raw waters frequently causes an unpredictable chemical dosing of preoxidation and coagulation for an effective removal of algal cells in water treatment plants. This study investigated the effects of preoxidation with NaOCl and ClO_2 on the coagulation-flotation effectiveness in the removal of two commonly blooming cyanobacteria species, Microcystis aeruginosa(MA) and Cylindrospermopsis raciborskii(CR), and their corresponding trihalomethane(THM) formation potential. The results showed that dual dosing with NaOCl plus ClO_2 was more effective in enhancing the deformation of cyanobacterial cells compared to single dosing with Na OCl, especially for CR-rich water.Both preoxidation approaches for CR-rich water effectively reduced the CR cell count with less remained dissolved organic carbon(DOC), which benefited subsequent coagulation–flotation. However, preoxidation led to an adverse release of algogenic organic matter(AOM) in the case of MA-rich water. The release of AOM resulted in a poor removal in MA cells and a large amount of THM formation after oxidation-assisted coagulation-flotation process. The reduction in THM formation potential of CR-rich waters is responsible for effective algae and DOC removal by alum coagulation. It is concluded that the species-specific characteristic of cyanobacteria and their AOM released during chlorination significantly influences the performance of coagulation–flotation for AOM removal and corresponding THM formation. The cyanobacteria-bloom in raw waters frequently causes an unpredictable chemical dosing of preoxidation and coagulation for an effective removal of algal cells in water treatment plants. This study investigated the effects of preoxidation with NaOCl and ClO_2 on the coagulation-flotation effectiveness in the removal of two commonly blooming cyanobacteria species, Microcystis aeruginosa(MA) and Cylindrospermopsis raciborskii(CR), and their corresponding trihalomethane(THM) formation potential. The results showed that dual dosing with NaOCl plus ClO_2 was more effective in enhancing the deformation of cyanobacterial cells compared to single dosing with Na OCl, especially for CR-rich water.Both preoxidation approaches for CR-rich water effectively reduced the CR cell count with less remained dissolved organic carbon(DOC), which benefited subsequent coagulation–flotation. However, preoxidation led to an adverse release of algogenic organic matter(AOM) in the case of MA-rich water. The release of AOM resulted in a poor removal in MA cells and a large amount of THM formation after oxidation-assisted coagulation-flotation process. The reduction in THM formation potential of CR-rich waters is responsible for effective algae and DOC removal by alum coagulation. It is concluded that the species-specific characteristic of cyanobacteria and their AOM released during chlorination significantly influences the performance of coagulation–flotation for AOM removal and corresponding THM formation.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第1期147-155,共9页 环境科学学报(英文版)
基金 the National Science Council of Taiwan (No. NSC102-2119-M-002-008) for the financial support
关键词 Algogenic organic matter Preoxidation Coagulation-flotation Disinfection-by-products Algogenic organic matter Preoxidation Coagulation-flotation Disinfection-by-products
  • 相关文献

参考文献3

二级参考文献17

共引文献18

同被引文献6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部