摘要
针对基本蝙蝠算法存在容易过早陷入局部最优以及求解精度低的问题,提出一种改进的蝙蝠算法(SABA),加入自适应的步长控制机制和变异机制.通过对12个单峰/多峰函数的测试表明,与粒子群算法、蝙蝠算法相比,SABA算法能够有效解决算法陷入局部最优的问题,从而具有较高的求解精度.
For the problems of low solution precision by the initial bat algorithm and falling into local optimum easily, an improved self-adaptive bat algorithm(SABA) is proposed, which combines the mechanisms of step-control and variation.Experiments are conducted on a set of 12 benchmark functions, and the results show that the proposed SABA has better performance than the particle swarm optimization(PSO) algorithm and initial bat algorithm(BA) in terms of accuracy and convergence speed.
出处
《控制与决策》
EI
CSCD
北大核心
2018年第3期557-564,共8页
Control and Decision
基金
国家自然科学基金项目(61601189)
现代农业产业技术体系建设专项资金(CARS-26)
广东省科技计划项目(2015A020209161
2016A020210088
2016A020210093)
广州市科技计划项目(201605030013)
关键词
蝙蝠算法
自适应
步长控制机制
变异机制
bat algorithm
self-adaptive
step-controlled mechanism
variation mechanism