期刊文献+

Precision forging technology for aluminum alloy 被引量:8

Precision forging technology for aluminum alloy
原文传递
导出
摘要 Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, auto- mobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision alumi- num alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts. Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, auto- mobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision alumi- num alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.
出处 《Frontiers of Mechanical Engineering》 SCIE CSCD 2018年第1期25-36,共12页 机械工程前沿(英文版)
基金 The authors would like to thank the support from Shenzhen Knowledge Innovation Project (Grant No. 201605313001169) and the National Natural Science Foundation of China (Grant No. 51435007).
关键词 precision forging aluminum alloy closed dieforging flow control forging hybrid-forming technology precision forging, aluminum alloy, closed dieforging, flow control forging, hybrid-forming technology
  • 相关文献

参考文献21

二级参考文献132

共引文献179

同被引文献100

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部