摘要
探索暗物质的物理本质是当前天体物理学与粒子物理学的共同核心任务之一.质量落在keV能区的惰性中微子是热门的暗物质候选粒子之一,在粒子物理、天体物理和宇宙学中均扮演重要的角色.通过辐射衰变,keV惰性中微子释放出一个单色光子,其能量恰为惰性中微子能量的1/2,这一性质对惰性中微子的探测提供了可行的途径.2014年,一个国际合作团队利用XMM-Newton卫星数据在近邻星系团中探测到了峰值能量为3.5 keV的弱发射线信号,并提出这是惰性中微子暗物质的衰变信号.然而,对此发现的后续研究由于现有X射线数据信噪比的限制无法得到一致的结论.爱因斯坦探针卫星独特的大视场巡天将覆盖若干近邻大质量星系、星系团,对3.5 keV信号获得高置信度的探测或有效排除,并可对暗物质在keV能段的可能信号开展高灵敏度搜寻.
Determining the physical nature of dark matter is central to contemporary astrophysics and particle physics. The hypothetical sterile neutrinos with a mass of order keV are one of the most promising candidate particles for dark matter, which can play an important role in particle physics, astrophysics and cosmology. In radiative decay, a keV sterile neutrino releases an X-ray photon that has an energy half of the neutrino's rest mass, which facilitates its indirect detection. In 2014, using stacked XMM-Newton spectra of nearby galaxy clusters, researchers reported the detection of a weak line-like feature at 3.5 keV, which was interpreted as the decaying signal of sterile neutrino dark matter. However, follow-up studies did not reach a consensus on the reality of this signal, chiefly due to the limited quality of current X-ray data. The Einstein Probe, with its unique wide-field telescopes, has the great potential of confirming or rejecting the 3.5 keV signal from nearby massive galaxies and galaxy clusters, and will effectively conduct a highly sensitive search for dark matter over the keV energy range.
出处
《中国科学:物理学、力学、天文学》
CSCD
北大核心
2018年第3期100-106,共7页
Scientia Sinica Physica,Mechanica & Astronomica
基金
国家自然科学基金(编号:11473010
11133001)
国家重点基础研究发展计划(编号:2017YFA0402703)
中国科学院战略性先导科技专项(编号:XDA15052100)资助项目
关键词
暗物质
惰性中微子
星系团
dark matter, sterile neutrino, galaxy cluster