期刊文献+

基于多维度体感信息的在线考试异常行为监测 被引量:7

Somatosensory information based misbehavior detection in online examinations
下载PDF
导出
摘要 考试者监测是在线考试面临的主要难题之一。传统监测方案主要集中在考试者的身份识别方面,缺乏对考试者异常行为的有效识别。面向在线考试异常行为监测,提出通过体感数据采集仪Kinect获得考试者的骨骼关节点位置以及头部偏转角度等姿态数据,判别在线考试过程中考试者的异常行为。同时,针对单一的动作事件判别方法存在的虚警率高的问题,提出利用多维度体感信息识别考试者行为的新思路。通过分析一个时间窗口内异常事件发生的频次以及持续时间等信息,判断考试者当前的行为是否异常。实验表明,所提方案可以有效地监测考试者在考试过程中出现的异常行为。 Examination surveillance is one of main challenges in online examination.Traditional approaches mainly focus on the identification of examinees and lack of flexible and scalable solutions to detect the misbehavior of the examinees in online examinations.We provide a new solution to monitor the examinees' behavior based on somatosensory information.Meanwhile,to reduce false alarm rate,a twodimensional gesture detection scheme is proposed,in which both the duration and frequency of the detected gesture events are adopted to describe the target misbehavior.Examinees' states are discriminated by analyzing the duration and frequency of the events happened within a time window.Experiments demonstrate that our proposed solution can effectively distinguish the examinees' misbehavior from their normal actions.
出处 《计算机工程与科学》 CSCD 北大核心 2018年第2期320-325,共6页 Computer Engineering & Science
基金 国家科技支撑计划(2015BAH33F04-05)
关键词 在线考试 行为监测 体感信息 online examination misbehavior detection somatosensory information
  • 相关文献

参考文献2

二级参考文献24

  • 1王典,程咏梅,杨涛,潘泉,赵春晖.基于混合高斯模型的运动阴影抑制算法[J].计算机应用,2006,26(5):1021-1023. 被引量:20
  • 2Ekman P,Bartlett M S,Hagger J C,et al.Measuring facial expressions by computer image Analysis[J].Psychophysiology,1999,36(2):253-263. 被引量:1
  • 3Wang H,Zhou L B,Ying Y.A Novel Approach for Real Time Eye State Detection in Fatigue Awareness System[C]∥IEEE Conference on Robotics Automation and Mechatronics(RAM).2010:528-532. 被引量:1
  • 4Moeslund T B,Hilton A,Kruger V.A survey of advances in vision-based human motion capture and analysis[J].Computer vision and image understanding,2006,104(2/3):90-126. 被引量:1
  • 5Agrarwal A,Triggs B.Recovering 3D human pose from monocu-lar images[J].IEEE Transactions on PAMI,2006,28(1):44-58. 被引量:1
  • 6Hariharan B,Gopalakrishnan U.Gesture recognition using Kinect in a virtual classroom environment[C]∥2014 4th International Conference on Digital Information and Communication Technology and it’s Applications.2014:118-124. 被引量:1
  • 7Hsu Hui-huang,Yi Chi-ou.Using Kinect to Develop a SmartMeeting Room[C]∥2013 16th International Conference on Network-Based Information Systems.2013. 被引量:1
  • 8Vermun K,Senapaty M.Gesture-based Affective and Cognitive States Recognition using Kinect for Effective Feedback during E-learning[C]∥2013 IEEE 5th International Conference on Technology for Education.2013:107-110. 被引量:1
  • 9Hu M K.Visual Pattern Recognition by Moment Invariants[J].IEEE Transactions on Information Theory,1962(8):179-187. 被引量:1
  • 10Huang Z H,Leng J S.Analysis of Hu’s moment invariants on image scaling and rotation[C]∥Proc.of the 2nd International Conference on Computer Engineering and Technology.2010:476-480. 被引量:1

共引文献18

同被引文献65

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部