期刊文献+

基于大数据的网络异常行为建模方法 被引量:8

Modeling Method of Network Abnormal Behavior Based on Big Data
下载PDF
导出
摘要 随着网络技术的发展,网络攻击方式复杂多变,传统检测技术无法应对未知的攻击模式,因此异常检测技术被提出。文章介绍了目前常见的异常检测技术,并分析了这些技术的优缺点,在此基础上提出了基于大数据的网络异常行为建模方法并分析了可行性。通过聚类算法识别偏离正常的流量,并对偏离流量的异常程度排序,采用基于阈值的方法将异常度高的流量标记为网络异常行为,目前已有的研究成果,为本文的可行性提供了可靠支持。 With the development of network technology, the pattern of network attack becomes complex and changeable, and the traditional detection technology can not cope with the unknown attack mode, thus the anomaly detection technology has been proposed. Accordingly, this paper introduces current common anomaly detection technologies, and analyzes the advantages and disadvantages of these technologies. Based on that, a network abnormal behavior modeling scheme based on big data is put forward and its feasibility is analyzed. By clustering algorithm to identify deviations from normal traffic, and sorting out the abnormal degree of deviating traffic, we use threshold based method to label abnormal traffic as network abnormal behavior. At present, the results of the research have provided reliable support for the feasibility of this paper.
出处 《电力信息与通信技术》 2018年第1期6-10,共5页 Electric Power Information and Communication Technology
关键词 大数据 网络异常行为 建模 big data network abnormal behavior modeling
  • 相关文献

参考文献3

二级参考文献22

  • 1陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:308
  • 2Lawrence Ho L, Cavuto D J, Papavassiliou S, et al. Adaptive and automated detection of service anomalies in transaction-oriented WAN ' s: Network analysis, algorithms, implementation and deployment[J]. IEEE Journal of Selected Areas in Communications, 2000, 18(5) : 744 -757 被引量:1
  • 3Hood C S, Ji C. Beyond thresholds : an alternative method for extracting information from network measures[ C ]//Proceedings of IEEE Globecom Conference. Phoenix:Arizona, 1997:487-491 被引量:1
  • 4Brutlag J. Aberrant behavior detection in time series for network monitoring [ C ]// Proceedings of the USENIX Fourteenth System Administration Conference LISA XIV. California: USENIX Assoc, 2000 : 139 - 146 被引量:1
  • 5Ho L L, Cavuto D J, Papavassiliou S. Adaptive and automated detection of service anomalies in transactionoriented WAN's: network analysis, algorithms, implementation, and deployment [ J]. IEEE Journal of Seletected Areas in Communications, 2000, 18 (5) : 744 -757 被引量:1
  • 6Brockwel P J, Davis R A. Introduction to time series and forecasting [ M]. New York: Springer, 2002: 326- 328 被引量:1
  • 7Chatfield C, Yark M. The Holt-Winters forecasting: some practical issues [J]. The Statistician, 1988, 37 : 129 - 140 被引量:1
  • 8Bermudez J D, Segura J V, Vercher E. Holt-Winters forecasting; an ahernative formulation applied to UK air passenger data [ J]. Journal of Applied Statistics, 2007, 34 (9) : 1075 - 1090 被引量:1
  • 9Heberlein L, security mon Privacy. Los 296-304 , Dias G V, Levitt K N, et itor [C]//Proc of the 1990 Symp Alamitos, CA: IEEE Computer A network Security and Society, 1990. 被引量:1
  • 10Callegarl C, Vaton S, Paqano M. A new statistical approach to network anomaly detection [C] //Proc of the 2008 Int Syrup on SPECTS. Los Alamitos, CA: IEEE Computer Society, 2008:441-447. 被引量:1

共引文献23

同被引文献91

引证文献8

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部