摘要
研究一类广义线性常微分方程解对参数的连续依赖性,利用Kurzweil积分理论与正则函数的相关性质,在Kuezweil积分下,根据广义常微分方程解对参数的连续依赖性,证明了含有Perron乘积积分表示的矩阵函数的广义线性微分方程解对参数的连续依赖性定理。
Continuous dependence of solutions to parameters of the first class generalized linear ordinary differential equations is studied here.With related properties of Kurzweil integral theory and regular function and Kuezweil integration,the theory is proved that the solution of matrix function generalized linear differential equation which is expressed with Perron product integration is dependent on parameter.
作者
金培兵
李宝麟
Jin Peibing;Li Baolin(College of Mathematics and Statistics, Northwest Normal University ,Lanzhou 730070 ,Chin)
出处
《甘肃科学学报》
2018年第1期6-10,共5页
Journal of Gansu Sciences
基金
国家自然科学基金项目(11061031)