期刊文献+

基于纹理模型的檀香咖啡豹蠹蛾虫害图像诊断方法研究

Image Diagnostic Method of Zeuzera coffeae in Santalum album by Texture Models
下载PDF
导出
摘要 基于纹理特征模型的檀香咖啡豹蠹蛾图像诊断方法,根据健康图像和虫害图像在纹理方面表现出的差异,提出海南省北部县市檀香受咖啡豹蠹蛾虫害"多纹理特征"的确定方法。针对每种图像类型,使用提取出的4维多纹理特征,组合得到6种数学模型,并对其进行评估。结果表明:模型1(自变量为熵值均值-相关性均值,因变量为熵值均值-能量均值)的模型精度与分类精度均为最佳,并且总体分类精度达到91.25%。与逐步聚类算法和K-means聚类算法、Logistic模型二分类法相比,该方法在保证分类精度的前提下减小了计算量,并为之后纹理图像分类提供了参考依据。 Abstract:According to differences in texture based on health images and pest images, a method of determining "multitexture features" of Zeuzera coffeae in Santalum album of northern counties in Hainan was put forward based on image diagnosis method of texture feature modeling. For each image type, 6 mathematical models were combined and evaluated by the extracted 4dimensional multitexture features. Results shows that model NO1 which X axis was the mean entropy correlation mean and Y axis was the mean entropy energy mean was the best in both fitting degree and classification accuracy, and the classification accuracy reached 9125%. Compared with stepwise clustering algorithm, Kmeans clustering algorithm and Logistic model twoclassifying method, this method could reduce the computational complexity under the premise of ensuring classification accuracy, and provide reference for texture image classification.
出处 《西南林业大学学报(自然科学)》 CAS 北大核心 2018年第1期117-125,共9页 Journal of Southwest Forestry University:Natural Sciences
基金 中央级科研院所基本科研业务费专项(CAFYBB2014MA006)资助
关键词 纹理特征 檀香 图像诊断 图像建模 灰度共生矩阵 texture feature Santalum album image diagnosis image-based modeling grayscale co-occur-rence matrix
  • 相关文献

参考文献12

二级参考文献188

共引文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部