摘要
针对一类参数不确定的非线性离散时间系统,研究了基于观测器的非脆弱耗散控制问题。首先,引入Bernoulli二项分布随机序列描述传感器-控制器以及控制器-执行器之间的丢包情况。通过构造合适的Lyapunov函数,结合线性矩阵不等式方法,得到了非脆弱耗散控制器存在的充分条件,再通过求解带有凸约束的矩阵不等式,得到了观测器增益与控制器增益的参数表达式,所设计的非脆弱耗散控制器能够确保系统指数稳定且均方严格耗散。最后通过仿真实例验证了该控制器设计方法的有效性与优越性。
The problem of observer-based robust non-fragile dissipative control is studied for a class of nonlinear discrete-time systems with parameter uncertainties. A Bernoulli distributed sequence is introduced to describe the random packet dropout occurring either in the sensor-to-controller channel or controller-to-actuator channel. By constructing appropriate Lyapunov functions, and utilizing the linear matrix inequality (LMI) method, a sufficient condition for the existence of the desired non-fragile dissipative controller is established, and the controller parameters can be obtained by solving a feasible problem with convex constraints. The designed non-fragile controller could guarantee the exponential stability and the strict dissipativity in the mean-square sense of closed-loop systems. Finally, a numerical example is provided to demonstrate the effectiveness and superiority of the proposed design method.
出处
《控制工程》
CSCD
北大核心
2018年第2期245-252,共8页
Control Engineering of China
基金
国家自然科学基金资助项目(61273131
61403168)
江苏省普通高校研究生科研创新计划项目(KYLX15_1193)