摘要
对OFDM(Orthogonal Frequency Division Multiplexing)系统中快时变稀疏信道估计进行了研究,采用CE-BEM模型(Complex Exponential-Basis Expansion Model)对时变信道进行建模。由于信道是稀疏的,所以对应的CE-BEM基的系数也是稀疏的,由此将估计信道的抽头响应问题转化为求解稀疏CE-BEM系数的问题。针对现实稀疏度未知的场景,提出了一种稀疏度自适应的分布式压缩感知(Distributed Compressive Sensing,DCS)算法。考虑到导频放置对性能影响的重要性,提出了一种新的放置方式。仿真结果表明,本文算法有效地提升了估计性能。
This paper studies the problem of time-varying and sparse channel estimation in the orthogonal frequency division multiplexing (OFDM) system. The complex exponential-basis expansion model (CE-BEM) is used to model the time-varying channel's response. The coefficient in CE-BEM is sparse due to the channel’s sparsity. Thus, the problem of estimating the sparse channel response turns into solving the coefficient of sparse CE-BEM. For the scene with unknown sparsity, this paper proposes a sparsity adaptive distributed compressive sensing algorithm. Furthermore, a pilot pattern design method is given to deal with the effect of pilot placement on channel estimation. Finally, the simulation results show that the proposed algorithm can effectively improve estimating performance.
出处
《华东理工大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第1期119-123,共5页
Journal of East China University of Science and Technology
基金
国家自然科学基金(61501187)