期刊文献+

网络大数据的分层调度技术研究 被引量:2

Research on hierarchical scheduling technology for network big data
下载PDF
导出
摘要 网络环境下的大数据已经成为数据传输的主要信息载体,大数据使用方式的多样化需要对网络大数据进行多维度的调度调用。传统网络大数据的调度技术能够简单地对网络大数据进行调度,但在目前高维度网络环境下很难进行分层次分维度的调用。针对上述问题,提出网络大数据的分层调度技术。在网络环境下设置多维度分层调度结构,通过网络多维度分层实现高精度的大数据调用。通过实验分析结果可以看出,提出的网络大数据的分层调度技术能够在网络环境下对大数据进行高精度的分层调度。 Big data in the network environment has become a main information carrier of data transmission,and the diversification of big data usage modes requires multi-dimensional scheduling call to network big data. The traditional network big data scheduling technology can schedule network big data simply,but it is difficult to make the hierarchical and multi-dimensional call in the current high dimensional network environment. Aiming at the above problems,a hierarchical scheduling technology for network big data is proposed. The multi-dimensional hierarchical scheduling structure is set up in the network environment,and the high-precision big data call can be realized by multi-dimensional stratification of network. The experimental analysis results show that the proposed hierarchical scheduling technology for network big data can carry out high-precision hierarchical big data scheduling in the network environment.
作者 杨军
出处 《现代电子技术》 北大核心 2018年第4期172-175,共4页 Modern Electronics Technique
关键词 网络环境 大数据调用 多维度调用 分层调度 调度结构 数据传输 network environment big data call multi-dimension call scheduling structure hierarchical scheduling data transmission
  • 相关文献

参考文献10

二级参考文献73

  • 1姜传菊.网络日志分析在网络安全中的作用[J].现代图书情报技术,2004(12):58-60. 被引量:19
  • 2ZHOU Shi, Mondragon R J. Accurately Modeling the Inter-net Topology[J]. Physical Review E, 2004, 70(6): 96-108. 被引量:1
  • 3LIU YS, He XG, Tang CJ, Li L.Special type database tech-nology[C]//. Beijing: Science Press, 2000(in Chinese). 被引量:1
  • 4JENSEN ED, LOCKE CD, TODUCA H. A time- drivenscheduling model for real-time operating systems. In:Pro-ceedings of the IEEE Real-time Systems Symposium[C]//.Washington, DC: IEEE Computer Society Press, 1985,112-122. 被引量:1
  • 5J. Goossens, P. Richard. Overview of real-time schedulingproblems. 9th international workshop on project manage-ment and Scheduling[R].Nancy, France, April 26- 282004: 13-22. 被引量:1
  • 6DEAN J,GHEMAWAT S.Map Reduce:simplified data processing on large clusters[J].Communications of the ACM,2008,51(1):107-113. 被引量:1
  • 7GHEMAWAT S,GOBIOFF H,LEUNG S T.The Google file system[J].ACM SIGOPS Operating Systems Review,2003,37(5):29-43. 被引量:1
  • 8SHVACHKO K,KUANG H,RADIA S,et al.The Hadoop dis-tributed file system[C]//2010 IEEE 26th Symposium on MassStorage Systems and Technologies(MSST).[S.l.]:IEEE,2010:1-10. 被引量:1
  • 9CHANG F,DEAN J,GHEMAWAT S,et al.Bigtable:A dis-tributed storage system for structured data[J].ACM Transac-tions on Computer Systems,2008,26(2):4-9. 被引量:1
  • 10Olston C, Chiou G, Chimis L, et al. Nova: Continuous Pig/Hadoop Workflows [C]// Proceedings of the SIGMOD'2011, Athens, Greece. USA: ACM, 2011: 1081-1090. 被引量:1

共引文献123

同被引文献25

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部