期刊文献+

基于GB2分布的贝叶斯相依性准备金评估模型 被引量:1

Bayesian Dependent Loss Reserving Models Based on GB2 Distribution
下载PDF
导出
摘要 非寿险精算的核心问题之一是对未决赔款准备金进行准确评估。在未决赔款准备金评估中,多条业务线的流量三角形数据之间通常存在一定的相依关系。为了考虑不同业务线之间的相依关系对未决赔款准备金评估结果的影响,本文基于GB2分布建立了一种相依性准备金评估模型,该模型首先假设不同业务线的增量赔款服从GB2分布,并在分布的期望中引入事故年和进展年作为解释变量,引入日历年随机效应描述各条业务线之间的相依关系;然后借助贝叶斯HMC方法进行参数估计和未决赔款准备金预测,最后给出了总准备金的预测分布和评估结果。本文将该方法应用到两条业务线的流量三角形数据进行实证研究,并与现有其他方法进行了比较。实证研究结果表明,基于GB2分布的相依性准备金评估模型对未决赔款准备金的尾部风险和不确定性的考虑更加充分,更加适用于评估具有厚尾或者长尾特征的准备金数据。 One of the most critical problems in casualty insurance is to determine an appropriate outstanding reserve for incurred but unpaid losses. Forecasts and risk margins are often based on incremental or cumulative payment data corresponding to different business lines of loss triangles. Modeling dependency among multiple loss triangles has important implication for the determination of loss reserves in property and casualty insurance. In fact,owing to diversity of loss reserving data,it is critical to select the appropriate distribution.Generalized beta distribution of the second kind( GB2 distribution) has a flexible probability density function with four parameters,which nests various distributions with light and heavy tails,to facilitate accurate loss reserving in insurance applications. This paper proposes a Bayesian model based on GB2 distribution to capture dependence between two cells of two different runoff triangles. First,we use the GB2 distribution to fit the incremental paid losses data and introduce accident year and development year as covariates. Then,we suppose a dependence between all the observations that belong to the same calendar year( CY) for each line of business. This model can be done by using the calendar year as common random effect. For illustration,the model is applied to a dataset from Shi( 2011) where a Bayesian method is proposed to estimate the distributionof the reserve. The result shows that the proposed model is more fully considered for the tail risk and uncertainty of the outstanding reserve than existing models,and is more suitable to model the loss reserving data with long and heavy tails.
出处 《统计研究》 CSSCI 北大核心 2018年第1期91-103,共13页 Statistical Research
基金 国家社会科学基金重大项目“巨灾保险的精算统计模型及其应用研究”(16ZDA052) 教育部人文社会科学重点研究基地重大项目“基于大数据的精算统计模型与风险管理问题研究”(16JJD910001)的资助
关键词 风险相依 GB2分布 贝叶斯方法 准备金评估 Dependency GB2 distribution Bayesian Approach Claims Reserve
  • 相关文献

参考文献3

二级参考文献30

  • 1孟生旺.广义线性模型在汽车保险定价的应用[J].数理统计与管理,2007,26(1):24-29. 被引量:33
  • 2Braun C. , 2004, The Prediction Error of the Chain Ladder Method Applied to Correlated Run-off Triangles [J]. ASTIN Bulletin, 34 (2), 399-423. 被引量:1
  • 3Frees E. W. , Valdez E. A. , 2008, Hierarchical Insurance Claims Modeling [J]. Journal of the A- merican Statistical Association, 103 (484), 1457-1469. 被引量:1
  • 4Gelman A. , Carlin J. B. , Stern H. S. , Rubin D. B. , 2004, Bayesian Data Analysis [M]. London: Chapman and Hall. 被引量:1
  • 5Happ S. , Merz M. , Wtithrich M. V. , 2012, Claims Development Result in the Paid-incurred Chain Reserving Method [J]. Insurance: Mathematics and Economics, 51 (1), 66-72. 被引量:1
  • 6Happ S., Wiithrich M. V., 2013, Paid-incurred Chain Reserving Method with Dependence Model- ing [J]. ASTIN Bulletin, 43 (1), 1-20. 被引量:1
  • 7Hess K. T. , Schmidt K. D. , Zocher M. , 2006, Multivariate Loss Prediction in the Multivariate Additive Model [J]. Insurance: Mathematics and Economics, 39 (2), 185-191. 被引量:1
  • 8IJiu H. J. , Verrall R. J. , 2010, Bootstrap Estimation of the Predictive Distributions of Reserves U- sing Paid and Incurred Claims [J]. Variance, 4 (2), 121-135. 被引量:1
  • 9Mack T. , 1993, Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Es- timates[J]. ASTIN Bulletin, 23 (2), 213-225. 被引量:1
  • 10Merz M. , Wtithrich M. V. , 2006, A Credibility Approach to the Munich Chain-ladder Method [J]. B1/itter der DVFM, 27 (4), 619-628. 被引量:1

共引文献23

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部