期刊文献+

基于自适应特征分布更新的压缩跟踪算法 被引量:3

Compression Tracking Algorithm Based on Adaptive Feature Distribution Updating
下载PDF
导出
摘要 传统压缩跟踪算法使用固定学习率更新特征分布,导致跟踪易受遮挡影响且鲁棒性较低。为此,提出一种可自动调节特征分布学习率的压缩跟踪算法。利用压缩感知理论得到样本的压缩域特征并计算其在正负类中的特征分布,结合两帧之间特征分布重叠度和正类更新阈值自适应更新特征分布,通过样本分类实现目标跟踪。在此基础上,利用相邻两帧目标改进的SIFT特征求解目标尺度变化,使跟踪窗口随目标变化实时更新。实验结果表明,该算法可有效抵抗遮挡、光线、尺度等因素对跟踪的干扰,具有较高的准确性、鲁棒性以及实时性。 A Compression Tracking(CT) algorithm is proposed to automatically adjust the learning rate of feature distribution,which is based on the problem that the fixed learning rate is used to update the feature distribution of the tracking algorithm,which is easily affected by the occlusion and the robustness is low.Compressed domain feature samples are obtained by the compressive sensing theory,calculate the distribution characteristics of various compression characteristics in the positive class and negative class,use the distribution of overlap between the two frames combines with adaptive threshold update distribution.Target tracking is achieved by sample classification.At the same time,the algorithm makes use of the improved SIFT features of adjacent two frames to solve the target scale change,and realize the tracking window with the change of the target in real time.Experimental results show that the proposed algorithm can effectively resist the interference of tracking,such as occlusion,ray and scale.It has higher accuracy,robustness and real-time performance.
作者 冷建伟 李鹏
出处 《计算机工程》 CAS CSCD 北大核心 2018年第2期264-270,共7页 Computer Engineering
关键词 特征分布 压缩特征 稀疏矩阵 巴氏系数 SIFT特征 仿射变换 feature distribution compression feature sparse matrix Bhattacharyya coefficient SIFT feature affine transformation
  • 相关文献

参考文献9

二级参考文献170

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:254
  • 2Lowe D G. Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 1150-1157. 被引量:1
  • 3Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110. 被引量:1
  • 4Mikolajczyk K, Matas J. Improving descriptors for fast tree matching by optimal linear projection. In: Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8. 被引量:1
  • 5Klare B, Li Z F, Jain A K. Matching forensic sketches to mug shot photos. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 639-646. 被引量:1
  • 6Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630. 被引量:1
  • 7Huang C R, Chen C S, Chung P C. Contrast context histogram — an efficient discriminating local descriptor for object recognition and image matching. Pattern Recognition, 2008, 41(10): 3071-3077. 被引量:1
  • 8Tola E, Lepetit V, Fua P. DAISY: an efficient dense descriptor applied to wide-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 815-830. 被引量:1
  • 9Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2004. 506-513. 被引量:1
  • 10Wong Y M. Invariant Local Feature for Image Matching [Master dissertation], Chinese University of Hong Kong, China, 2006. 被引量:1

共引文献70

同被引文献43

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部