期刊文献+

采用改进全卷积网络的“高分一号”影像居民地提取 被引量:10

Extraction of Residential Areas in GF-1 Remote Sensing Images Based on Improved Fully Convolutional Network
下载PDF
导出
摘要 针对现有的高分辨率遥感图像居民地信息提取精度和效率不够高的问题,提出了一种基于改进全卷积网络的"高分一号"(GF-1)遥感影像居民地提取方法。首先,通过专业的目视解译制备大量居民地训练样本;然后,将预训练过的深度卷积神经网络进行全卷积网络的改造,并以具有多尺度卷积核的Inception模块代替由全连接层改造的卷积层,达到减小网络模型参数量、增加特征表达能力的目的;最后,用制作好的高分辨率遥感图像居民地数据集进行训练和验证,生成可直接进行居民地信息提取的全卷积网络。实验结果表明,基于改进全卷积网络的方法可以实现精确有效的居民地信息提取,Kappa系数超过94%。 The existing residential areas extraction methods suffer from low accuracy and efficiency. To o-vercome these problems,an improved fully convolutional network based residential areas extraction method is proposed. Firstly,large number of training samples are prepared by professional visual interpretation,and then a pre-trained deep convolution neural network is transformed into a fully convolutional network. Ad-ditionally ,in order to reduce the amount of parameters and improve feature expression ability of the net- work,the convolutional layers transformed from fully connected layers are replaced with Inception module. Finally,the improved fully convolutional network is trained by the dataset prepared before. The experiment reveals that the proposed method achieves automatic,effective extraction of residential area information,and Kappa Coefficient is raised up to above 94%.
出处 《电讯技术》 北大核心 2018年第2期119-125,共7页 Telecommunication Engineering
基金 国家科技重大专项(2009ZX02308-004) 河北省高等学校科学研究项目(Z2014088)
关键词 “高分一号”卫星 高分辨率遥感图像 居民地信息提取 深度学习 全卷积网络 GF-1 satellite high resolution remote sensing image residential areas extraction deep learn- ing fully convolutional network * *
  • 相关文献

参考文献5

二级参考文献34

  • 1苏俊英,曹辉,张剑清.高分辨率遥感影像上居民地半自动提取研究[J].武汉大学学报(信息科学版),2004,29(9):791-795. 被引量:26
  • 2王成儒,吴娅辉.旋转不变纹理特征用于两级图像检索[J].光电工程,2005,32(3):70-72. 被引量:10
  • 3李弼程,彭天强,彭波,等.智能图象处理技术[M].北京:电子工业出版社,2004:357. 被引量:5
  • 4John R,Smith,Shih-fu Chang Automated binary texture feature sets for image retrieval[J].In Proc.IEEE Int.Conf.Acoust.,Speech,and Signal Proc,1996(5). 被引量:1
  • 5Robert M,Haralick,K Shanmugam,Its' hak Dinstein Texture features for image classification[J].IEEE Trans.On Sys,Man,and Cyb,1973,Smc-3 (6):610-621. 被引量:1
  • 6T Ojala,M Pietikainen,T Maenpaa.Gray scale and rotation invariant texture classification with Local Binary Patterns[J].Computer Vision Proceedings,ECCV 2000,Lecture Notes in Computer Science 1842,Springer:404-420. 被引量:1
  • 7HE Dong-chen,WANG Li.Texture unit,texture spectrum,and texture analysis[J].IEEE Transactions on Remote Sensing,1990,28(4). 被引量:1
  • 8Tamura H,Mori S,Yamawaki T.Texture features corresponding to visual perception[J].IEEE Trans.On Systems,Man and Cybemetics,1978,Smc-8 (6):460-473. 被引量:1
  • 9Muller H,Muller W.Performance evaluation in contentbased image retrieval:overview and proposals[J].Pattem Recognition Letters,2001,22(5):593-601. 被引量:1
  • 10国家航天局.中国的航天(白皮书)[R].2001年,北京. 被引量:1

共引文献182

同被引文献173

引证文献10

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部