期刊文献+

计入基础运动的环状周期结构振动特性分析

Vibration Characteristic Analysis of Ring-Shaped Periodic Structure Incorporating Basic Movement
下载PDF
导出
摘要 研究了一类工程领域广泛应用的环状周期结构的弹性振动特性,重点分析了基础运动对弹性振动稳定性和固有频率分裂的影响.首先在随动坐标系下采用Hamilton原理建立了计入基础运动和面内切向及径向弹性振动的偏微分形式的动力学模型.然后,应用伽辽金方法将其离散得到一组常微分动力学方程.根据经典振动理论,得到了系统特征值的数学表达.最后采用数值方法计算了系统的特征值.根据特征值的实虚部取值预测了不稳定域和固有频率分裂规律,并用Runge-Kutta法给出稳定性的数值验证.该研究为陀螺仪等呈现平面或空间基础运动的环状周期结构的动态性能的改善提供了理论借鉴. The elastic vibration characteristic of a ring-shaped periodic structure intensively used in engineering prac-tice was examined,where the focus was on the effect of basic movement on elastic vibration stability and naturalfrequency splitting. Firstly,a partial differential dynamic model incorporating basic movement and in-plane tangen-tial as well as radial elastic vibrations was established in moving frame using Hamilton's principle. Then,a set of ordinary differential dynamic equations were formulated using Galerkin method. The mathematical expressions of eigenvalues of the system were derived according to the classical vibration theory. Finally,the eigenvalues were cal-culated by use of numerical method. Unstable areas and the rules of natural frequency splitting were predicted by means of real and imaginary parts of eigenvalues. The stability was verified by numerical calculation with Runge-Kutta method. This research provides theoretical reference for the dynamic performance improvement of microgyro-scope or other ring-shaped periodic structures undergoing two- or three-dimensional basic movement.
出处 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2018年第2期167-174,共8页 Journal of Tianjin University:Science and Technology
基金 国家重点基础研究发展计划(973计划)资助项目(2013CB035403) 国家自然科学基金资助项目(51175370 51675368) 天津市应用基础与前沿技术研究计划重点资助项目(13JCZDJC34300) 天津市应用基础与前沿技术研究计划资助项目(14JCYBJC18800)~~
关键词 环状周期结构 弹性振动 稳定性 特征值 ring-shaped periodic structure elastic vibration stability eigenvalue
  • 相关文献

参考文献4

二级参考文献18

  • 1楼梦麟,洪婷婷.预应力梁横向振动分析的模态摄动方法[J].工程力学,2006,23(1):107-111. 被引量:27
  • 2G.施韦策,H.布鲁勒,A.特拉克斯勒著,虞烈,袁崇军译.主动磁轴承基础、性能及应用[M].北京:新时代出版社,1997. 被引量:1
  • 3J C Ji. Dynamics of a Jeffcott Rotor-magnetic Bearing System with Time Delays[J]. International Journal of Non-Linear Mechanics, 2003, (38) :1387 - 1401. 被引量:1
  • 4Hu Yefa, Wu Huachun, Wang Xiaoguang,etc. Inversion of Magnetic Bearing Sensors'Position. Proceedings of the Second Iriternational [ C ]. Proceedings of the Second Internetional,Symposium on Instrumentation Science and Technology, Jinan, China, 2002. 被引量:1
  • 5Zuoxing Yang, Lei Zhao, Hongbin Zhao. Global Linearization and Microsynthesis for High-Speed Grinding Spindle With Active Magnetic Bearings [J]. IEEE Transactions on Magnetics, 2002, 38 ( 1 ) : 250 - 256. 被引量:1
  • 6Zhang J, Schulze J O, Barletta N. Sychronous Three-level PWM Power Amplifier for Active Magnetic Bearings[ C ]. Proceedings of the 5th International Symposium on Magnetic Bearings, Kanazawa, Japan, 1996. 被引量:1
  • 7Allaei D,Soedel W,Yang T Y. Natural frequencies and modes of rings that deviate from perfect axisymmetry [J]. Journal of Sound and Vibration, 1986,111 (1) :9-27. 被引量:1
  • 8Detinko F M. Free vibration of a thick ring on multiple supports [J]. International Journal of Engineering Science, 1989,27 (11):1429-1438. 被引量:1
  • 9Hwang R S,Fox C H J,McWilliam S. The in-plane vibration of thin rings with in-plane profile variations (Part Ⅰ).General background and theoretical formulation [J]. Journal of Sound and Vibration, 1999,220 (3) : 497-516. 被引量:1
  • 10Fox C H J,Hwang R S ,McWilliam S. The in-plane vibration of thin rings with in-plane profile variations (Part Ⅱ) :Application to nominally circular rings [J]. Journal of Sound and Vibration, 1999,220 (3) : 517-539. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部