期刊文献+

MapReduce框架下支持差分隐私保护的随机梯度下降算法 被引量:3

Stochastic gradient descent algorithm preserving differential privacy in MapReduce framework
下载PDF
导出
摘要 针对现有分布式计算环境下随机梯度下降算法存在效率性与私密性矛盾的问题,提出一种MapReduce框架下满足差分隐私的随机梯度下降算法。该算法基于MapReduce框架,将数据随机分配到各个Map节点并启动Map分任务独立并行执行随机梯度下降算法;启动Reduce分任务合并满足更新要求的分目标更新模型,并加入拉普拉斯随机噪声实现差分隐私保护。根据差分隐私保护原理,证明了算法满足e-差分隐私保护要求。实验表明该算法具有明显的效率优势并有较好的数据可用性。 Aiming at the contradiction between the efficiency and privacy of stochastic gradient descent algorithm in dis-tributed computing environment, a stochastic gradient descent algorithm preserving differential privacy based on Ma-pReduce was proposed. Based on the computing framework of MapReduce, the data were allocated randomly to each Map node and the Map tasks were started independently to execute the stochastic gradient descent algorithm. The Reduce tasks were appointed to update the model when the sub-target update models were meeting the update requirements, and to add Laplace random noise to achieve differential privacy protection. Based on the combinatorial features of differential privacy, the results of the algorithm is proved to be able to fulfill ε-differentially private. The experimental results show that the algorithm has obvious efficiency advantage and good data availability.
出处 《通信学报》 EI CSCD 北大核心 2018年第1期70-77,共8页 Journal on Communications
基金 国家自然科学基金资助项目(No.61100042) 国家社科基金资助项目(No.15GJ003-201)~~
关键词 机器学习 随机梯度下降 MAPREDUCE 差分隐私保护 拉普拉斯机制 machine learning, stochastic gradient descent, MapReduce, differential privacy preserving, Laplace mechanism
  • 相关文献

参考文献2

二级参考文献50

  • 1Dean J, Corrado G, Monga R, et al. Large scale distributed deep networks//Proceedings of the Conference on Neural Information Processing Systems. Lake Tahoe, USA, 2012: 1223-1231. 被引量:1
  • 2McDonald R, Hall K, Mann G. Distributed training strategies for the structured perceptron//Proceedings of the Human Language Technologies-. The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Los Angeles, USA, 2010: 456-464. 被引量:1
  • 3Hall K B, Gilpin S, Mann G. MapReduee/Bigtable for distributed optimization//Proeeedings of the Conference on Neural Information Proeessing Systems. Workshop on Learn- ing on Cores, Clusters and Clouds. Vancouver, Canada, 2010. 被引量:1
  • 4Mann G, McDonald R T, Mohri M, et al. Efficient large- scale distributed training of conditional maximum entropy models//Proceedings of the Conference on Neural Information Processing Systems. Vancouver, Canada,2009:1231-1239. 被引量:1
  • 5Zinkevich M, Weimer M, Smola A J, et al. Parallelized stochastic gradient descent//Proceedings of the Conference on Neural Information Processing Systems. Vancouver, Canada, 2010:4. 被引量:1
  • 6Kleiner A, Talwalkar A, Sarkar P, et al. The big data bootstrap //Proceedings of the International Conference on Machine Learning. Edinburgh, UK, 2012. 被引量:1
  • 7Louppe G, Geurts P. A zealous parallel gradient descent algorithm//Proceedings of the Conference on Neural Infor- mation Processing Systems. Workshop on Learning on Cores, Clusters and Clouds. Vancouver, Canada, 2010. 被引量:1
  • 8Niu F, Recht B, R, C, et al. Hogwildl: A lock-free approach to parallelizing stochastic gradient descent// Proceedings of the Conference on Neural Information Processing Systems. Granada, Spain, 2011:693-701. 被引量:1
  • 9Langford J, Smola A J, Zinkevich M. Slow learners are iast//Proceedings of the Conference on Neural Information Processing Systems. Vancouver, Canada, 2009:2331-2339. 被引量:1
  • 10Dai W, Wei J, Zheng X, et al. Petuum: A framework for iterative- convergent distributed, arXiv preprint arXiv, 1312. 7651, 2013. 被引量:1

共引文献32

同被引文献23

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部