期刊文献+

基于压缩感知的仓储无线传感粮情监测方法

A Research on Wireless Sensor Grain Storage situation Monitoring Method Based on Compressed Sensing
下载PDF
导出
摘要 以三维表面的视觉测量和稀疏表示为研究对象,针对仓储存粮情况信息监测设备成本高、测量过程复杂、数据量巨大等问题,提出了基于曲面稀疏重构的仓储无线传感粮情监测和处理方法。研究设计了正则化可变步长自适应匹配追踪的曲面重构算法,建立了仓储粮情监测的压缩感知测量机制,为大规模仓储管理中粮食数量估计、温湿度异常检测与定位的无线感知测量奠定了理论基础。 Three-dimensional surface visual measurement and sparse representation as the research object,the study puts forward a solution of monitoring on storage and wireless sensor of grain situation based on sparse surface reconstruction, aiming at the issues of high cost of equipment, complexity of measuring process and huge amount of data. The study provides a designation of regularization variable step size adaptive matching pursuit of surface reconstruction algorithm and the establishment of grain storage condition measurement and compressed sensing mechanism, which lays a theoretical foundation for wireless sensor of grain storage estimation, temperature and humidity anomaly detection and positioning in the army logistics warehousing management.
作者 钟庭剑
出处 《江西电力职业技术学院学报》 CAS 2017年第4期17-20,共4页 Journal of Jiangxi Vocational and Technical College of Electricity
关键词 三维表面测量 多尺度几何解析 压缩感知 粮食信息处理 three-dimensional surface measurements multiple-scales geometrical analysis compressed sensing food information processing
  • 相关文献

参考文献1

二级参考文献16

  • 1Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 2Cands E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. 被引量:1
  • 3Ayatollahi Tabatabaii H S, Rabiee H R, and Rohban M H. Incorporating betweenness centrality in compressive sensing for congestion detection[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Canada, 2013: 4519-4523. 被引量:1
  • 4Stuff M, Thelen B, and Garbarino J. Compressive sensing and 3-D radar imaging[C]. IEEE Statistical Signal Processing Workshop, TBD, 2012: 540-543. 被引量:1
  • 5Duarte M F. Localization and bearing estimation via structured sparsity models[C]. IEEE Statistical Signal Processing Workshop, TBD, 2012: 333-336. 被引量:1
  • 6Bourrier A, Gribonval R, and Prez P. Compressive Gaussian Mixture Estimation[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Canada, 2013: 1-5. 被引量:1
  • 7Zheng H Xiao S, Wang X, et al.. Energy and latency analysis for in-network computation with compressive sensing in wireless sensor networks[C]. Proceedings of IEEE INFOCOM Orlando, 2012: 2811-2815. 被引量:1
  • 8Soni A and Haupt J. Learning sparse representations for adaptive compressive sensing[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, 2012: 2097-2100. 被引量:1
  • 9Zahedi R, Krakow L W, Chong E K P, et al.. Adaptive compressive sampling using partially observable markov decision processes[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, 2012: 5269-5272. 被引量:1
  • 10Caione C, Brunelli D, and Benini L. Distributed compressive sampling for lifetime optimization in dense wireless sensor networks[J]. IEEE Transactions on Industrial Informatics, 2012, 8(1): 30-40. 被引量:1

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部