期刊文献+

面向低碳的双层遗传算法烟草物流路径优化 被引量:13

Low carbon-oriented route optimization of tobacco logistics via double-layer genetic algorithm
下载PDF
导出
摘要 为提高烟草物流配送服务水平、降低配送成本,通过引入工作量均衡指标,建立了低碳背景下的碳排放数学模型,并提出了改进的双层遗传算法用于优化物流路径。第一层遗传算法以工作量均衡为目标进行聚类,将多车辆多服务点问题转换为单车辆多服务点配送;第二层设计了禁忌遗传算法,通过增加禁忌表的记忆功能,提高模型求解的精确性。以浙江烟草商业物流配送中心为对象,对本文算法与模型的实际效果进行验证,结果表明:本文算法在计算时间和收敛效果上均优于单层遗传算法;物流路径优化后配送成本降低25.4%,批零效率提高36.8%,中转效率提高33.9%。该算法和模型为优化烟草物流配送路径提供了技术支持。 In order to promote distribution service and reduce delivery cost of tobacco logistics, a carbon emission mathematical model on a background of low carbon was established by introducing workload equilibrium index, and an improved double-layer genetic algorithm was proposed to optimize delivery route. Taking workload balancing as a target and by way of clustering, the first layer converted an issue of multi-vehicle to multi-service point into an issue of single-vehicle to multi-service point. In the second layer, a tabu genetic algorithm was designed to promote the precision of model through adding a memory function to the tabu list. Taking the distribution center of Zhejiang Provincial Tobacco Corporation as an object, the said algorithm and the model were validated. The results showed that the algorithm was superior to single-layer genetic algorithm in terms of calculation time and convergence effect. The optimized delivery route decreased the delivery cost by 25.4%, increased average wholesale efficiency by 36.8%, and raised average transfer efficiency by 33.9%. The algorithm and the model provide technical supports for the optimization of delivery route in tobacco logistics.
出处 《烟草科技》 EI CAS CSCD 北大核心 2018年第1期85-92,共8页 Tobacco Science & Technology
关键词 烟草物流 配送成本 路径优化 双层遗传算法 低碳 禁忌遗传算法 Tobacco logistics Delivery cost Route optimization Double-layer genetic algorithm Low carbon Tabu genetic algorithm
  • 相关文献

参考文献8

二级参考文献36

  • 1Balakrishnan J,Cheng C H,Wong K F.FACOPT:a user friendly FACility layout OPTimization system[J].Computers & Operations Research,2003,30(11):1625-1641. 被引量:1
  • 2Higgins J C. On the merits of simple models in distribution planning[J].International Journal of Physical Distribution,2006,(2):144-148. 被引量:1
  • 3Tan K C. Artificial intelligence heuristics in solving vehicle routing problems with time window constraints[J].{H}Engineering applications of artificial intelligence,2001,(14):825-837. 被引量:1
  • 4Cooper L. The transportation-location problem[J].{H}Operations Research,2007,(20):94-108. 被引量:1
  • 5Tarankilis C D,Kiranondis C T. Using a spatial decision support system for solving the vehicle routing problem[J].{H}Information & Management,2004,(39):359-375. 被引量:1
  • 6Zheng Y S, Liu B. Fuzzy vehicle routing model with credi-bility measure and its hybrid intelligent algorithm[J].Applied Mathematics and Computation,2006,176(2).673-683. 被引量:1
  • 7Jozefowiez N,Semet F,Tatbi E G. Muti-objective vehicle rout- ing problems [J].European Journal of Operational Research. 2008,189(2). 293-309. 被引量:1
  • 8Ghoseiri K, Ghannadpour S F. Multi-objective vehicle routing problem with time windows using goal programming and ge- netic algorithm[J]. Applied Soft Computing. 2010,10(4),1096- 1107. 被引量:1
  • 9江新姿,高尚,陈建忠.求解旅行商问题的模拟退火蚁群算法[J].计算机工程与设计,2008,29(6):1491-1493. 被引量:6
  • 10张维泽,林剑波,吴洪森,童若锋,董金祥.基于改进蚁群算法的物流配送路径优化[J].浙江大学学报(工学版),2008,42(4):574-578. 被引量:57

共引文献63

同被引文献147

引证文献13

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部