期刊文献+

网络空间向量剖分法识别城市路网网格模式 被引量:7

Grid Pattern Recognition in Street Network Space by Vector Tessellation Method
原文传递
导出
摘要 将道路网络空间视为嵌在2D空间中的独立子空间,利用形态单一的线性单元剖分图结构的边,实现网络空间的栅格化;提取网格模式的典型特征,包括几何和拓扑特征,以栅格单元邻域为目标计算特征值,构建特征向量描述栅格单元,实现对象空间到特征空间的映射,构建空间向量场;基于支持向量机(support vector machine,SVM)实现网格模式分类;结合格式塔原则完善实验结果。将此方法应用于深圳市路网数据,实验结果表明能有效地识别网格模式。 A vector tessellation method is proposed for grid pattern recognition in street networks.This study regards a street network as an independent subspace embedded in the 2 Dspace,and subdivides street segments into linear elements with equal lengths.The characteristics of grid patterns are extracted,including directional,geometrical and topological features.To map the object space to the feature space and to build a vector field,the linear element is described as a feature vector and the eigenvalues are calculated with the neighboring elements.A grid pattern classification is realized based on a support vector machine(SVM),and the classification result is optimized based on Gestalt principles.The method was applied to the street network of Shenzhen.The experimental results show that the method effectively mines grid pattern in street networks.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2018年第1期138-144,共7页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金重点项目(41531180) 国家高技术研究发展计划(863计划)(2015AA1239012) 武汉大学研究生自主科研项目(2015205020202)~~
关键词 道路网络空间 网格模式 空间剖分 特征提取 SVM street network space grid pattern spatial tessellation feature extraction SVM
  • 相关文献

参考文献2

二级参考文献28

  • 1Brassel K E, Weibel R. A Review and Conceptual Framework of Automated Map Generalization [J]. International Journal of Geographical Information Systems, 1998, 2(3): 229-244. 被引量:1
  • 2Heinzle F, Ander K,Sester H. Graph Based Approaches for Recognition of Patterns and Implicit Information in Road Networks[C]. The 22nd International Cartographic Conference, A Coruna, Spain, 2005. 被引量:1
  • 3Yang Bisheng, Luan Xuechen, Li Qingquan. An Adaptive Method for Identifying the Spatial Patterns in Road Networks[J]. Computers, Environment and Urban Systems. 2010, 84:40-48. 被引量:1
  • 4Kohonen T. Self-organizing Maps (3rd Edition) [M]. Berlin: Springer, 2001. 被引量:1
  • 5Sester M. Optimization Approaches for Generalization and Data Abstraction[J]. International Journals of Geographical Information Science, 2005, 19 (8/ 9) : 871-897. 被引量:1
  • 6Allouche M K, Moulin B. Amalgamation in Cartographic Generalization Using Kohonen 's Feature Nets[J]. International Journals of Geographical Information Science, 2005, 19(8/9): 899-914. 被引量:1
  • 7Jiang Bin, Harrie I.. Selection of Streets from a Network Using Self-organizing Maps[J]. Transactions in GIS, 2004, 8(3): 335-350. 被引量:1
  • 8Heinzle F, Ander K H, Sester M. Pattern Recognition in Road Networks on the Example of Circular Road Detection [C]. GIScience 2006, Munster, Germany, 2006. 被引量:1
  • 9Rosin P L. Measuring Rectangularity[J]. Machine Vision and Applications, 1999, 11:191-196. 被引量:1
  • 10Xie Feng, Levinson D. Measuring the Structure of Road Networks [J]. Geographical Analysis, 2007 (39) : 336-356. 被引量:1

共引文献20

同被引文献69

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部