摘要
称有界线性算子T具有性质(u),如果T的上半Weyl谱在T的谱中的补集恰好就是T的孤立谱点中的特征值全体.研究了性质(u)与各种Weyl型定理之间的关系,性质(u)在交换幂零、拟幂零、幂有限秩和Riesz摄动下的稳定性,并给出了关于这些理论结果的有趣例子.
A bounded linear operator T is said to have property (u) , if the complement in the spectrum o'(T) of the upper semi - Weyl spectrum σvsw(T) is the set of all eigenvalues which are i- solated in the spectrum. In this paper, we study the property (u) in connection with Weyl type theo- rems, the stability of this property under commuting nilpotent, quasi - nilpotent, power finite rank or Riesz perturbations, and some interesting examples are given to illustrate the theoretical results.
出处
《福建师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第1期1-4,共4页
Journal of Fujian Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(11401097)