期刊文献+

跳跃自激发与非对称交叉回馈机制下的期权定价研究 被引量:11

Option pricing for the dynamics of jump-diffusion model with jump self-exciting and asymmetric cross-feedback
原文传递
导出
摘要 跳跃集聚和波动率非对称回馈是股票价格运动过程中不可忽视的重要特征.基于动态跳-扩散半鞅随机过程,本文提出了具有时变跳跃到达率和波动率的双因子交叉回馈机制的期权定价模型,推导了跳-扩散交叉回馈模型的一般化风险中性变换关系;同时借助序贯贝叶斯方法对模型和跳跃风险溢价进行校准,并对道琼斯工业平均指数(DJX)、标普500指数(SPX)、苹果(APL)、IBM、JP摩根(JPM)股票进行实证研究,研究发现,它们的跳跃达到率和波动率都呈现集聚性和非对称回馈效应,且跳跃到达率具有更强的持续性和更大的杠杆系数;跳跃风险溢价在定价中占主要地位.期权定价的实证研究还表明,双因子交叉回馈模型具有最小的期权定价误差,定价能力明显优于单向回馈的跳-扩散模型. Jump clustering and volatility asymmetric feedback are important features in stock markets. This paper studies the option pricing issues for a dynamics of jump-diffusion process, which considers the mechanism of time-varying jump arrival rates, diffusion volatility clustering and the asymmetric cross- feedback effect. First, this paper presents the no-arbitrage conditions of equivalent martingale measures for the general jump-diffusion process based on local risk neutral valuation relationship; and then estimates the parameters and jump risk premium of the dynamic jump-diffusion model using the sequential Bayesian learning approach; Finally is the empirical research on the standardized European options of S&P500 Index and Dow Jones Industrial Average, APPLE, IBM and JP Morgan. Our study shows the significant evidence of the jump self-exciting, volatility clustering and asymmetric cross-feedback; these jumps also have a higher persistent influence and show a greater leverage effect to the stock markets; the dynamics of the cross-feedback jump-diffusion model have better performance in option pricing compared with these one-way-feedback jump-diffusion models. Jump risk premium is significantly higher than that of diffusion risk, which plays a dominant role in the process of asset pricing.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2018年第1期1-15,共15页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71601125,71471119) 教育部人文社会科学研究青年基金(16YJC790030)~~
关键词 期权定价模型 跳跃自激发行为 非对称交叉回馈机制 序贯贝叶斯参数学习 option pricing model jump self-exciting asymmetric cross-feedback sequential Bayesian learning approach
  • 相关文献

参考文献5

二级参考文献42

  • 1张兵.证券市场波动不对称性的动态研究[J].管理学报,2006,3(3):366-370. 被引量:10
  • 2聂富强,宋国军.沪、深股市波动不对称性的实证分析[J].数理统计与管理,2007,26(1):172-177. 被引量:23
  • 3Akgiray, V., and Bonth, G. G., 1988, "Mixed Jump-Diffusion Process Modeling of Exchauge Rate Movements", Review of Economics and Statistics, 70, 631-637. 被引量:1
  • 4Bates, D. S. and Craine. R., 1998. "Valuirtg the Futures Market Clearinghouse's Default Exposure During the 1987 Crash", Journal of Money, Credit. and Banking, 31. 248-272. 被引量:1
  • 5Bates, D. S.. 1991, "The Crash of '87: Was it Expected? The Evidence From the Options Markets", Journal of Finance, 46, 1009- 1044. 被引量:1
  • 6Bekaert, G., and Gray, S. F., 1998, "Target Zones and Exchange Rates: An Empirical Investigation", Journal of International Economics, 45, 1-35. 被引量:1
  • 7Chan, W. H., and Maheu, J. M., 2002, "Conditional Jump Dynamics in Stock Market Returns", Journal of Business & Economic Statistics, 20, 377-389. 被引量:1
  • 8Chernov, M., Gallant, A. R., Ghysels, E., and Tauehen, G., 1999, "A New Class of Stochastic Volatility Models With Jumps: Theory and Estimation", Working paper. 被引量:1
  • 9Daal, E., Naka, A., and Yu, J. S., 2007, "Volatility Clustering, Leverage Effects, and Jump Dynamics in the US and Emerging Asian Equity Markets", Journal of Banking and Finance, 31, 2751-2769. 被引量:1
  • 10Daal, E., and Yu, J. S., 2005, "A Comparison of Mixed GARCH-Jump Models with Skewed t-Distribution for Asset Returns", Working Paper. 被引量:1

共引文献103

同被引文献90

引证文献11

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部